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Abstract. Let A be a local ring with 2 invertible. It is known that the

localization of the cohomology ring H∗ét(A,Z/2) with respect to the class

(−1) ∈ H1
ét(A,Z/2) is isomorphic to the ring C(sperA,Z/2) of continuous

Z/2-valued functions on the real spectrum of A. Let In(A) denote the powers
of the fundamental ideal in the Witt ring of symmetric bilinear forms over A.

The starting point of this article is the “integral” version: the localization of

the graded ring
⊕
n≥0 I

n(A) with respect to the class 〈〈−1〉〉 := 〈1, 1〉 ∈ I(A)

is isomorphic to the ring C(sperA,Z) of continuous Z-valued functions on the

real spectrum of A.
This has interesting applications to schemes. For instance, for any algebraic

variety X over the field of real numbers R and any integer n strictly greater

than the Krull dimension of X, we obtain a bijection between the Zariski
cohomology groups H∗Zar(X, I

n) with coefficients in the sheaf In associated

to the nth power of the fundamental ideal in the Witt ring W (X) and the

singular cohomology groups H∗sing(X(R),Z).

1. Introduction

Let X be an algebraic variety over the field of real numbers and let d denote the
Krull dimension of X. Let Hn denote the Zariski sheaf associated to the presheaf
U 7→ Hn

ét(U,Z/2), where Hn
ét(U,Z/2) denotes the étale cohomology of U with Z/2Z-

coefficients. Under the hypotheses that X is smooth, integral, and quasi-projective
a classic theorem of Raman Parimala and Jean-Louis Colliot-Thélène states that
the sections of Hn are in bijection with H0

sing(X(R),Z/2) when n ≥ d+ 1 [CTP90,
Theorem 2.3.1]; it follows from this that there is a bijection of cohomology groups

(1) H∗Zar(X,Hn) ' H∗sing(X(R),Z/2)

when n ≥ d + 1, where X(R) denotes the real points of X equipped with the Eu-
clidean topology (Remark 4.3 defines this topology) and H∗sing(X(R),Z/2) denotes
the singular cohomology groups of the real points with Z/2Z-coefficients.

Let W (X) denote the Witt ring of symmetric bilinear forms over X and In(X)
the powers of the fundamental ideal c.f. [Kne77]. Let In denote the Zariski sheaf
associated to the presheaf U 7→ In(U). Let In denote the sheaf associated to the
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presheaf U 7→ In(U)/In+1(U). The short exact sequence of sheaves

0→ In+1 → In → In → 0

induces a long exact sequence in Zariski cohomology
(2)

· · · → Hm
Zar(X, In+1)→ Hm

Zar(X, In)→ Hm
Zar(X, In)

∂→ Hm+1
Zar (X, In+1)→ · · ·

In the introduction to [Fas13] Jean Fasel made the following assertions: the Zariski
cohomology groupsH∗Zar(X, In) are the analogue of the singular cohomology groups

H∗sing(X(R),Z), while H∗Zar(X, In) are the analogue of H∗sing(X(R),Z/2); the map

H∗Zar(X, In+1)→ H∗Zar(X, In) corresponds to the homomorphismH∗sing(X(R),Z)
2→

H∗sing(X(R),Z) induced by the multiplication by 2 on the coefficients; the connect-

ing homomorphism H∗Zar(X, I
n
)
∂→ H∗Zar(X, In+1) is analogous to the Bockstein

homomorphism H∗sing(X(R),Z/2)
β→ H∗+1

sing(X(R),Z). Under the additional hy-
pothesis that X is affine, smooth, and has trivial canonical sheaf, he proved that
Hd
Zar(X, In) ' Hd

sing(X(R),Z) for all n ≥ d [Fas11, Proposition 5.1].
We prove these assertions as a consequence of our more general results on real

cohomology and the powers of the fundamental ideal. Precisely, we show in Corol-
lary (8.3) that when n ≥ d + 1, the global signature induces an isomorphism

Hm
Zar(X, In)

sign
' Hm

sing(X(R),Z) for all m ≥ 0 which in turn induces an isomor-
phism of long exact sequences from (2) to

· · · → Hm
sing(X(R),Z)

2→ Hm
sing(X(R),Z)→ Hm

sing(X(R),Z/2)
β→ Hm+1

sing (X(R),Z)→ · · ·

Real cohomology is a cohomology theory for schemes that globalizes to any
scheme X singular cohomology in the sense that when X is a real variety, the real
cohomology groups Hm(Xr,Z) may be identified with the singular cohomology
groups Hm

sing(X(R),Z). For details see Remark (4.3). The foundations and funda-
mental results on real cohomology are due to Claus Scheiderer [Sch94]. There is a
close relationship between real and étale cohomology: the étale cohomology of X
with 2-primary coefficients stabilizes in high degrees against the real cohomology of
X with 2-primary coefficients [Sch94, Corollary (7.19), Proposition (19.8)]. He also
obtained a generalization to schemes of the bijection (1). To introduce it, first recall
that for any scheme X, multiplication by cup product with (−1) ∈ H1(Xét,Z/2)
induces a morphism of sheaves Hn → Hn+1. Consequently one may consider the
colimit lim−→H

n over the system

H0 (−1)→ H1 (−1)→ H2 (−1)→ · · ·

The signature modulo 2 induces an isomorphism of sheaves lim−→H
n → supp∗ Z/2

which induces an isomorphism of cohomology groups

(3) Hm
Zar(X, lim−→H

n) ' Hm(Xr,Z/2)

for all m ≥ 0, where Hm(Xr,Z/2) denotes the real cohomology of X with coeffi-
cients in the constant sheaf Z/2 [Sch94, Corollary 19.5.1].

Note that one cannot obtain integral coefficient versions of the isomorphisms (1)
and (3) by simply replacing everywhere Z/2 with Z because when n > d the étale
cohomology groups Hn

ét(U,Z) are always torsion for any open subscheme U of X
[Sch94, Corollary 7.23.3].
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Here, we obtain integral versions by demonstrating in Theorem (8.5) that for any
scheme X with two invertible in its global sections the signature induces an isomor-
phism of sheaves lim−→I

n → supp∗ Z which induces an isomorphism of cohomology
groups

Hm
Zar(X, lim−→I

n)
sign
' Hm(Xr,Z)

for all m ≥ 0, where lim−→I
n denotes the Zariski sheaf on X obtained by taking the

colimit of the system of sheaves

W 〈〈−1〉〉→ I 〈〈−1〉〉→ I2 〈〈−1〉〉→ · · ·

and In 〈〈−1〉〉→ In+1 denotes the map induced by tensor product with the Pfister
form 〈〈−1〉〉 := 〈1, 1〉.

These global results follow from the local case, that is, the statement on the
localization of the graded ring I∗(A) from the abstract. Another way of stating
this is to say that

(4) sign : lim−→ In(A)→ C(sperA,Z)

is bijective for any local ring A with 2 invertible. Injectivity of (4) is well-known and
follows from the local ring version of Pfister’s local-global principal (for instance
[Kne77, Ch. II §5] or directly in terms of the signature used in this article [Mah82,
Théorème 2.1 and Corollaire]). The statement that (4) is surjective is stronger than
Mahé’s theorem, which states that the cokernel of sign : W (A) → C(sperA,Z) is
2-primary torsion for any commutative ring with 2 invertible. We believe it is
known as well, but we don’t know of a reference in the literature for surjectivity of
(4) when A is local. We give a proof of bijectivity of (4) in Proposition (7.1) in a
much different way using cohomological methods. For instance, in Theorem (5.2)
we prove the Gersten conjecture for the Witt groups with 2 inverted of any regular
excellent local ring. From this we deduce injectivity of (4) for any local ring with 2
invertible using “Hoobler’s trick”. Similarly, in Proposition (6.1) we prove a purity
result for lim−→ In(A) in “geometric” cases and deduce surjectivity in general from
this.

2. Total signature

For now and throughout this section, let F be a field of characteristic different
from two, although the hypothesis on the characteristic is not necessary for the
definitions.

Definition 2.1. An ordering on F is a subset P ⊂ F satisfying the following:

(1) P + P ⊂ P , PP ⊂ P ;
(2) P ∩ (−P ) = 0;
(3) P ∪ −P = F .

If b − a ∈ P , then one writes a ≤P b. If a ∈ P and a 6= 0, then a >P 0. It follows
from the axioms that if F is nontrivial, then 1 >P 0. Also, for any a 6= 0 one writes
sgn P (a) = 1 if a ∈ P and sgn P (a) = −1 if a ∈ −P . From the axioms one has that
sgn P (ab) = sgn P (a)sgn P (b) for any a, b ∈ F×, consequently assigning any a ∈ F×
to sgn P (a) determines a homomorphism sgn P : F× → {±1} of groups. The pair
(F, P ) is called an ordered field [KS89, Kapitel I, Definition 1 and Bemerkungen].
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Definition 2.2. The real spectrum of F , denoted sperF , is the topological space
formed by equipping the set of all orderings on F with the topology generated by
the subbasis consisting of subsets H(a) ⊂ sperF , a ∈ F , where H(a) denotes the
set of all orderings P satisfying a >P 0.

Definition 2.3. Let P be an ordering on F . Any non-degenerate quadratic form
φ over F splits as an orthogonal sum φ ' φ+ ⊥ φ−, where the form φ+ is positive
definite with respect to the ordering (for all 0 6= v, q(v) > 0 with respect to P ) and
the form φ− is negative definite with respect to the ordering (i.e.−φ− is positive
definite). The numbers n+ := dimφ+ and n− := dimφ− do not change under
an isometry of φ [KS89, Chapter 1, Section 2, Satz 2]. The integer sign P ([φ]) :=
n+ − n− is defined to be signature of [φ] with respect to P . As the signature of the
hyperbolic form is trivial, assigning to an isometry class [φ] its signature sign P ([φ])
defines a map

sign P : W (F )→ Z

which is a homomorphism of rings [KS89, Chapter 1, Section 2, Satz 2]. Let
C(sperF,Z) denote the set of continuous integer valued functions on the real spec-
trum of F . The total signature is the ring homomorphism

sign : W (F )→ C(sperF,Z)

which assigns to an isometry class [φ] the continuous function P 7→ sign P ([φ])
[KS89, Chapter III, Section 8, Satz 1]. If F has no ordering, then sign is trivial.

The following lemma is obtained directly from the definition of the signature and
the fact that the signature is a ring homomorphism.

Lemma 2.1. Let P be an ordering on F .

(1) If φ is a diagonalizable form, φ ' 〈a1〉 ⊥ · · · ⊥ 〈an〉 for some a1, · · · , an ∈
F×, then

sign P ([φ]) :=

n∑
i=1

sgn P (ai)

(2) Let a ∈ F×. The Pfister form 〈〈a〉〉 := 〈1,−a〉 has total signature

sign (〈〈a〉〉) = 21{a<0}

(3) Let a1, a2, · · · , an ∈ F×. The n-fold Pfister form 〈〈a1, · · · , an〉〉 := 〈〈a1〉〉⊗
· · · ⊗ 〈〈an〉〉 has total signature

sign (〈〈a1, · · · , an〉〉) = 2n1{a1<0,··· ,an<0}

Definition 2.4. As hyperbolic forms have even rank, assigning a quadratic form
to its rank modulo 2 determines a ring homomorphism W (F )→ Z/2Z. The kernel
is denoted I(F ) and is called the fundamental ideal of F . The powers of the
fundamental ideal Ij(F ) are additively generated by Pfister forms 〈〈a1, · · · , aj〉〉,
so it follows from Lemma 2.1 that the signature induces a group homomorphism

sign : Ij(F )→ C(sperF, 2jZ)
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and the diagram below commutes

Ij(F )
sign

//

〈〈−1〉〉
��

C(sperF, 2jZ)

2

��

Ij+1(F )
sign

// C(sperF, 2j+1Z)

So after identifying

lim−→(C(sperF,Z)
2→ C(sperF, 2Z)

2→ C(sperF, 22Z)
2→ · · · ) ' C(sperF,Z)

one obtains the map

(5) lim−→(W (F )
〈〈−1〉〉→ I(F )

〈〈−1〉〉→ I2(F )
〈〈−1〉〉→ · · · ) sign→ C(sperF,Z)

where lim−→ denotes the colimit of the directed system of groups.

The following result first appeared in the paper of J. Arason and M. Knebusch
cited in the Proposition below. Injectivity follows from A. Pfister’s local-global
principal [Pfi66, Satz 22] and surjectivity follows immediately from the “Normality
Theorem” of R. Elman and T.Y. Lam [EL72, 3.2].

Proposition 2.5. [AK78, Satz 2a.] The morphism (5) is a bijection.

3. Residues

Throughout this section A will denote a discrete valuation ring with fraction
field K and residue field k = A/m of characteristic different from two. Let π be a
uniformizing parameter for A. The following lemma restates well-known facts on
the second residue for Witt groups c.f. [MH73, Chap. IV (1.2)-(1.3)].

Lemma 3.1. (1) Every rank one quadratic form over K is isometric to some
〈c〉, where c = bπn, b is a unit in A, and either n = 0 or n = 1.

(2) The second residue ∂π : W (K)→W (k) has the following description

∂π(〈c〉) =

{
〈b〉 if n = 1

0 if n = 0

on rank one forms 〈c〉 as in (1).
(3) The second residue respects the powers of the fundamental ideal, that is, for

any integer n ≥ 1, it induces a homomorphism of groups

∂π : In(K)→ In−1(k)

where I0(k) := W (k).

Definition 3.1. Let P be an ordering on the fraction field K. One says that A is
convex in K (with respect to P ) when for all x, y, z ∈ K

{x ≤P z ≤P y and x, y ∈ A} ⇒ z ∈ A,

c.f. [KS89, Kapitel II, §1, Definition 1], [KS89, Kapitel II, §2, Satz 3], and [BCR98,
Definition 10.1.3 (ii), Proposition 10.1.4]. If A is convex in K, then the subset P :=
σ(P ∩ A) ⊂ k, where σ : A → k is the surjection onto the residue field, defines an
ordering on k called the induced ordering [KS89, Kapitel II, §2, Bemerkungen]. For
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any ordering ξ ∈ sper k, let Yξ ⊂ sperK denote the subset consisting of orderings

such that A is convex in K and ξ = P is the induced ordering. The assignment

P 7→ sgn P (π)

defines a bijection from Yξ to the set {±1} [KS89, Kapitel II, §7, Theorem (Baer-
Krull)], c.f. [BCR98, Theorem 10.1.10 and its proof]. That is to say, there are
exactly two orderings in Yξ, say η+ and η−, where sgn η+(π) = 1 and sgn η−(π) =
−1. The group homomorphism

βπ : C(sperK,Z)→ C(sperA/m,Z)

is defined by assigning s ∈ C(sperK,Z) to the map ξ 7→ βπ(s)(ξ), where βπ(s)(ξ) :=
s(η+)− s(η−). If sperA/m = ∅, then it is defined to be zero.

Lemma 3.2. Let π be a uniformizing parameter for A. The morphism βπ of
Definition (3.1) has the following description on elements sign (〈c〉), where c = bπn,
b is a unit in A, and either n = 0 or n = 1:

βπ(sign (〈c〉)) =

{
2sign (〈b〉) if n is 1

0 if n is 0.

Proof. Let c = bπn, where b is a unit in A, and either n = 0 or n = 1. We have the
following equalities which will prove the lemma. For any ξ ∈ sperA/m:

βπ(sign (〈c〉))(ξ) = sign η+(〈c〉)− sign η−(〈c〉)
= sgn η+(c)− sgn η−(c)

=

{
sgn ξ(c)− sgn ξ(c) if n = 0 (both orderings induce ξ)

sgn η+(bπ)− sgn η−(bπ) if n = 1

=

{
0 if n = 0

sgn η+(b)sgn η+(π)− sgn η−(b)sgn η−(π) if n = 1

=

{
0 if n = 0

sgn η+(b) + sgn η−(b) if n = 1 (by definition of η+ and η−)

=

{
0 if n = 0

sgn ξ(b) + sgn ξ(b) if n = 1 (both orderings induce ξ)

=

{
0 if n = 0

2sgn ξ(b) if n = 1

�

The next lemma follows from Lemmas (3.1) and (3.2).

Lemma 3.3. The diagram of abelian groups below is commutative.

lim−→ In (K)
∂π //

sign

��

lim−→n≥−1
In(k)

2sign

��

C(sperK,Z)
βπ // C(sper k,Z)
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where lim−→n≥−1
In(k) denotes the colimit over

W (k)
〈〈−1〉〉→ W (k)

〈〈−1〉〉→ I(k)
〈〈−1〉〉→ I2(k)

〈〈−1〉〉→ · · ·

4. Real cohomology

In [Sch94], C. Scheiderer developed a theory of real cohomology for schemes. It
“globalizes” to schemes the singular cohomology of the real points of a real variety
in the same way that étale cohomology globalizes the singular cohomology of the
complex points of a complex variety. We recall the definition and some properties
we will need following [Sch94].

Definition 4.1. The real spectrum of a ring A is a topological space denoted
by sperA. As a set it consists of all pairs ξ = (p, P ) with p ∈ specA and P
an ordering of the residue field k(p). For any point ξ ∈ sperA, let k(ξ) denote
the real closure of the ordered field k(p) with respect to P . For a ∈ A, write
a(ξ) > 0 to indicate that the image of a in k(ξ) is positive. The sets of the form
D(a) := {ξ ∈ sperA : a(ξ) > 0}, a ∈ A are a subbasis for the topology on sperA.
The real spectrum of a scheme X is the topological space Xr formed by glueing
the real spectra of its open affine subschemes. This does not depend on the open
cover of X that was chosen. Furthermore, any map of schemes f : Y → X induces
a continuous map of real spectra fr : Yr → Xr. The assignment (p, P ) 7→ p defines
a continuous map of topological spaces sperA → specA and similarly one has a
continuous map supp : Xr → X called the support map.

Definition 4.2. Let X be a scheme. First we recall the definition of the real site
of X, which we will also denote by Xr. It is the category O(Xr) of open subsets of
Xr equipped with the “usual” coverings, i.e. a family of open subspaces {Uλ → U}
is a covering of U ∈ O(Xr) if U = ∪Uλ.1 The category of sheaves of abelian
groups on Xr is denoted Ab(Xr) and the category of abelian groups by Ab. For
any F ∈ Ab(Xr), the real cohomology groups of X with coefficients in F are the
right derived functors of the global sections functor Γ : Ab(Xr) → Ab. They are
denoted by

Hp(Xr,F) := RpΓF
where RpΓ is the p-th derived functor of Γ. When X = specA is affine, we may
write Hp(sperA,F) instead of Hp(Xr,F). For any abelian group M , we will also
denote by M the sheaf on Xr associated to the presheaf U 7→M , U any open in Xr.
Such a sheaf is called a constant sheaf. Moreover, when the group M is equipped
with the discrete topology we may write C(sperA,M) instead of H0(sperA,M). If
i : S → Xr is a closed subspace, then for any abelian sheaf F on Xr, one defines

H0
S(Xr, F ) := ker(F (Xr)→ F (Xr \ S)).

1The real étale site, denoted Xrét, is obtained by equipping the category of étale X-schemes
with coverings given by the real surjective families, that is, {fλ : Uλ → U} is a covering if

the real spectrum Ur equals the union of the images (fλ)r((Uλ)r). For any sheaf F on Xr,

{X′ f→ X} 7→ H0(X
′
r, f
∗
r F ) defines a sheaf on Xrét denoted F [. This determines a functor from

the category X̃r of sheaves on Xr to the category X̃rét of sheaves on Xrét which is an equivalence

of categories compatible with morphisms Y → X of schemes [Sch94, Theorem 1.3, Theorem 1.14,
and Remark 1.16]. We follow [Sch95, Notation] in defining real cohomology and cohomology with

supports as sheaf cohomology on the topological space Xr.
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The functor F 7→ H0
S(Xr, F ) is left exact and its right derived functors

Hq
S(Xr, F ) := RqH0

S(Xr, F )

are called the relative cohomology of F with support in S [Sch95, Notations] c.f. [MR072,
Exp. V, 6.3] or [Gro05, Exp. I, §2, Definition 2.1]. Additionally, i!F is defined to
be the sheaf

S ∩ U 7→ ker(F (U)→ F (U \ (S ∩ U)))

on S (U open in Xr) and one has that

H0
S(Xr, F ) = H0(Xr, i∗i

!F )

using the exact sequence

(6) 0→ i∗i
!F → F → j∗j∗F → i∗R

1i!F → 0

c.f. [MR072, Exp. V, Proposition 6.5] or [Gro05, Exp. I, Corollaire 2.11] noting
that R1i∗i

!F ' i∗R1i!F as i∗ is exact [Sch94, Corollary 3.11.1].

Remark 4.3. Let X be an algebraic variety over R, by which we mean an R-scheme
that is separated and of finite type. We explain in this remark how to equip X(R)
with a topology and identify its singular cohomology with the real cohomology of
Xr. For any affine scheme U = specR[T1, T2, · · · , Tn]/I, we consider the R-points
U(R) as a topological space by equipping U(R) ⊂ Rn with the subspace topology,
where Rn has the Euclidean topology. The Euclidean topology on the set of R-
points X(R) is the topological space formed by glueing the U(R) of its open affine
subschemes. This does not depend on the open cover of X that was chosen. The
inclusion map i : X(R) → Xr, sending an R-point x to the pair (x,R≥0), is con-
tinuous and i−1 induces a bijection from connected components of Xr (resp. from
connected components of any basic open D(a1, a2, · · · , an) in Xr) to connected
components of X(R) (resp. to connected components of i−1(D(a1, a2, · · · , an)))
[CR82, Corollaire 3.7 ]. Hence, the functor i∗ determines an equivalence from the
category of constant sheaves of abelian groups on X(R) to the category of constant
sheaves of abelian groups on Xr. Consequently, for any abelian group M , the sheaf
cohomology H∗(X(R),M) coincides with the real cohomology groups H∗(Xr, i∗M)
and H∗(Xr,M). Also, singular cohomology H∗sing(X(R),M) is canonically isomor-
phic to sheaf cohomology H∗(X(R),M) c.f. [Sch94, Remark 13.6]. In particular,
the real cohomology groups H∗(Xr,Z) are finitely generated groups, isomorphic to
H∗sing(X(R),Z).

Definition 4.4. Let Ab(XZar) denote the category of sheaves of abelian groups
on the Zariski site XZar. Since the support map is a continuous map of topological
spaces it induces the direct image functor

supp∗ : Ab(Xr)→ Ab(XZar)

and this functor is faithful and exact [Sch94, Theorem 19.2].

Lemma 4.1. Let X be a scheme. For any sheaf F ∈ Ab(Xr),

Hp(Xr,F) ' Hp
Zar(X, supp ∗F)

Proof. Using the Grothendieck spectral sequence for the composition of the functors
supp ∗ and the global sections functor Γ we obtain a spectral sequence with Ep,q2 =
Hp
Zar(X,R

qsupp ∗F) that abuts to Hp+q(Xr,F). For q > 0, the sheaves Rqsupp ∗F
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vanish [Sch94, Theorem 19.2]. Therefore the edge maps in this spectral sequence

determine isomorphisms Hp(Xr,F)
'→ Hp

Zar(X, supp ∗F) for p ≥ 0. �

Next we recall the work of C. Scheiderer [Sch95] in which he constructs a “Bloch-
Ogus” style complex that computes real cohomology. The codimension of support
filtration on X determines a spectral sequence abutting to real cohomology. Schei-
derer shows that for regular excellent schemes the E1-page is zero except for the
complex E∗,01 and hence obtains the result below. Recall that a locally noetherian
scheme is called excellent if X can be covered by open affine subschemes specAα
where the Aα are excellent rings [Gro64, 7.8.5]. For a point x ∈ X of a scheme, we
will denote sper k(x) by xr.

Proposition 4.5. [Sch95, 2.1 Theorem] Let X be a noetherian regular excellent
scheme. Let W be an open constructible subset of Xr, and let F be a locally constant
sheaf on W . Then there is a complex of abelian groups

(7)
⊕

x∈X(0)

H0
x(W,F)→

⊕
x∈X(1)

H1
x(W,F)→

⊕
x∈X(2)

H2
x(W,F)→ · · ·

natural in W and F , whose qth cohomology group is canonically isomorphic to
Hq(W,F), q ≥ 0. Here Hq

x(W,F) := Hq
xr∩W (sperOX,x ∩W,F) are the relative

cohomology groups of sperOX,x with support in xr ∩W (Definition (4.2)) and X(i)

denotes, for i ≥ 0, the set of codimension i points (dimOX,x = i) of X. This
complex is contravariantly functorial for flat morphisms of schemes.

The following lemma is based on the proof of [Sch95, 2.6 Proposition] where
M = Z/2Z.

Lemma 4.2. Let X be a noetherian regular excellent scheme which is integral with
function field K. Let x ∈ X(1) and let π denote a choice of uniformizing parameter
for OX,x. Fix an integer n ≥ 0 and let M denote the constant sheaf Z. Denote by
∂ the map

H0(sperK,M)→ H1
xr (sperOX,x,M)

induced by first differential of the complex (7) from Proposition (4.5). Then, there
is an isomorphism ιπ : H1

xr (sperOX,x,M) → H0(xr,M) for which ιπ ◦ ∂ = βπ,
where βπ is the map of Definition (3.1).

Proof. Let X
′

= sperOX,x, Z
′

= xr, let i : Z
′ → X

′
denote the inclusion, and let

j : sperK → X
′

denote the inclusion of the complement to Z
′
. For any abelian

sheaf M on X
′

the sequence

M → j∗j
∗M → i∗R

1i!(M)→ 0

is exact (Definition (4.2) sequence (6)). By [Sch95, Lemma 1.3], for any locally

constant sheaf M on X
′

the sequence

M → j∗j
∗M

β→ i∗i
∗M → 0
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is exact, where β is defined on stalks as (βs)ζ = s(η+)− s(η−) ∈M . Hence we get
an isomorphism ιπ of cokernels and a commutative diagram

(8) j∗j
∗M(X

′
)

∂ //

β

''

i∗R
1i!M(X

′
)

ιπ

��

i∗i
∗M(X

′
)

Tracking down all the definitions, one finds that Diagram (8) is equal to the diagram
below.

H0(X
′ − Z ′ ,M)

∂ //

βπ

((

H1
Z′

(X
′
,M)

ιπ

��

H0(Z
′
,M)

where the vertical map is the isomorphism ιπ chosen, the diagonal map is the map
βπ of Definition (3.1) and sperK equals X

′ − Z ′ . This finishes the proof of the
lemma. �

Lemma 4.3. Let A be a regular excellent local ring with fraction field K. Let
X = specA, and for any x ∈ X(1), let πx be a choice of uniformizing parameter
for OX,x. Then, the sequence below is exact

0→ C(sperA,Z)→ C(sperK,Z)
⊕βπ→

⊕
x∈X(1)

C(sper k(x),Z)

where βπ is the map of Definition (3.1).

Proof. To prove the Lemma, choose isomorphisms ιπ for each x ∈ X(1) as in Lemma
(4.2) and then use Proposition (4.5). �

5. On the Gersten conjecture with 2 inverted

Definition 5.1. Let A be a regular local ring with 2 invertible and let X = specA.
Let d denote the Krull dimension of A and K the fraction field of A. We will
work with the Gersten complex for the Witt groups of X as found for instance in
[BGPW02, Definition 3.1], which we will denote by C•(A,W ). Recall that for any
integer p ≥ 0, after choosing local parameters for OX,x for each x ∈ X(p) one may

write down isomorphisms ιp : Cp(A,W )
'→

⊕
x∈X(p)

W (k (x)). Then, C•(A,W ) is

isomorphic to the complex

C•(A,W, ι) := W (K)
∂ι→

⊕
x∈X(1)

W (k (x))
∂ι→ . . . . . .

∂ι→
⊕

x∈X(d)

W (k (x))

where the differentials are ∂ι := ιp+1 ◦ ∂ ◦ ι−1
p and ∂ is the differential leaving

Cp(A,W ). The differentials ∂ι may differ for different choices of isomorphisms ιp
but the resulting complexes will all be isomorphic. For all x ∈ X(1) we may choose
parameters π ∈ OX,x so that ∂ι : W (K) → W (k(x)) equals the second residue
∂π of Lemma 3.1 [BW02, Lemma 8.4] c.f. [Gil07, Proposition 6.5]. It was proved
by J. Arason that the second residue ∂π respects the filtration by powers of the
fundamental ideal, that is, ∂π(In(K)) ⊂ In−1(k(x)) [Ara75] and similarly one may
show that all the differentials ∂ι respect this filtration, for instance, this was shown
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by S. Gille [Gil07, Corollary 7.3] for coherent Witt groups which gives the same
complex since A is regular [BGPW02, Section 3, Another Construction]). So one
may obtain a subcomplex

C•(A, In, ι) :=
⊕

x∈X(0)

In (k (x))
∂ι→

⊕
x∈X(1)

In−1 (k (x))
∂ι→ . . . . . .

∂ι→
⊕

x∈X(d)

In−d (k (x))

where we set Im (k (x)) = W (k (x)) when m ≤ 0. Define

C•(A,W/In) := C•(A,W )/C•(A, In, ι)

to be the quotient complex. The exact sequence of complexes

0 // C•(A, In, ι) //

2

��

C•(A,W ) //

2

��

C•(A,W/In) //

2

��

0

0 // C•(A, In+1, ι) // C•(A,W ) // C•(A,W/In+1) // 0

determines a exact sequence of colimits

(9) 0 // C•(A, lim−→ In) // C•(A, lim−→W ) // C•(A, lim−→W/In) // 0

where we define C•(A, lim−→ In) := lim−→C•(A, In, ι), and C•(A, lim−→W/In) := lim−→C•(A,W/In),

and C•(A,W [ 1
2 ]) := lim−→(C•(A,W )

2→ C•(A,W )
2→ C•(A,W )

2→ · · · ).

Theorem 5.2. If A is a regular excellent local ring with 2 invertible, then the
Gersten complex C•(A,W [ 1

2 ]) is exact and H0(C•(A,W [ 1
2 ])) = W (A)[ 1

2 ].

Proof. We proceed by induction on the Krull dimension of A. The Gersten complex
without inverting 2 is exact already in low dimensions for any regular local ring
[BGPW02, Lemma 3.2]. Fix A and assume the statement of the proposition is
known for regular excellent local rings of Krull dimension less than that of A. It
is sufficient to show that the cohomology of C•(A,W [ 1

2 ]) vanishes in degrees 2
and higher: one may use the Balmer-Walter spectral sequence with 2 inverted for
Witt groups to show that this implies H∗(C•(A,W [ 1

2 ])) = 0 in positive degree

and H0(C•(A,W [ 1
2 ])) = W (A)[ 1

2 ], e.g. [BGPW02, Lemma 3.2]. For any regular
parameter f ∈ A, there is a short exact sequence of complexes

0→ C•(A,W )→ C•(Af ,W )→ C•(A/f,W )[−1]→ 0

for instance see [BGPW02, Lemma 3.3 and proof of Theorem 4.4]. Taking colimits
it remains exact. As dimA/f is strictly less than dimA and A/f is again regular
and excellent we have that C•(A/f,W [ 1

2 ])[−1] is exact. Hence it remains to see
that C•(Af ,W ) is exact in degrees 2 and higher. Note that for any p ∈ specAf ,
dim(Af )p is strictly less than dimA and (Af )p is again regular and excellent, hence
the cohomology of C•(Af ,W [ 1

2 ]) agrees with H∗Zar(specAf , lim−→W), where lim−→W
denotes the colimit over the sheaves

W 〈〈−1〉〉→ W 〈〈−1〉〉→ W 〈〈−1〉〉→ · · ·

For any point p in specAp, using the induction hypothesis we have that the top
row in the commutative diagram below is exact and using Lemma (4.3) we have
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that the bottom row is exact

0 // lim−→W ((Af )p) //

��

lim−→W (K)
⊕∂π //

sign

��

⊕
x∈Y (1) lim−→W (k(x))

2sign

��

0 // C(sper (Af )p,Z[ 1
2 ]) // C(sperK,Z[ 1

2 ])
⊕βπ //

⊕
x∈Y (1) C(sper k(x),Z[ 1

2 ])

where Y := spec (Af )p. Proposition (2.5) implies the middle vertical map is a
bijection and the rightmost vertical map is an injection from which it follows that

the leftmost vertical map is bijective. Thus we get an isomorphism lim−→W
'→

supp ∗Z[ 1
2 ] of sheaves on Af as it is an isomorphism on stalks, where we use Lemma

(4.1) to identify the sheaf supp ∗Z[ 1
2 ] as the sheaf U 7→ C(Ur,Z[ 1

2 ]). Then, the real
cohomology groups H∗(sperAf ,Z[1/2]) are isomorphic to H∗Zar(specAf , lim−→W), so
it remains to prove their vanishing in degree 2 and higher. This is true since
the real cohomology of local rings vanish in positive degree (in fact, semilocal too)
[Sch94, Proposition (19.2.1)] and the real cohomology of sperAf sits in a long exact
sequence with that of sperA/f and sperA whenever A is regular excellent [Sch95,
Corollary (1.10)]. This finishes the proof. �

Since the diagram below is commutative

lim−→ In(A) //

��

W (A)[ 1
2 ]

��

lim−→ In(K) // W (K)[ 1
2 ]

and the horizontal maps in the diagram are injective, we have the following Corol-
lary to Theorem (5.2).

Corollary 5.1. Let A be a regular excellent local ring with 2 invertible. The map

lim−→ In(A)→ lim−→ In(K)

is injective.

We will also need the following result later.

Lemma 5.1. Let A be a regular excellent local ring with 2 invertible. The coho-
mology groups Hm(C•(A, lim−→ In)) vanish when m ≥ 2.

Proof. Consider the long exact sequence in cohomology

· · · → Hm(C•(A, lim−→ In))→ Hm(C•(A, lim−→W ))→ Hm(C•(A, lim−→W/In))→ · · ·

associated to the short exact sequence of complexes (9). The cohomology groups
Hm(C•(A, lim−→W )) vanish when m > 0 by Theorem (5.2). Then Hm(C•(A, lim−→ In))

is isomorphic to Hm−1(C•(A, lim−→W/In)) for all m ≥ 2. The cohomology groups

Hm(C•(A, lim−→W/In)) are two-primary torsion since the complex C•(A, lim−→W/In)

is, while the groups Hm(C•(A, lim−→ In)) have no 2-primary torsion since multiplica-
tion by 2

C•(A, lim−→ In)
2→ C•(A, lim−→ In)

is an isomorphism of complexes. Thus both groups vanish proving the lemma. �
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6. Purity of the limit in the local “geometric” case

For any prime p, we will use Z〈p〉 to denote the localization of Z at the prime
ideal 〈p〉 ∈ specZ. In this section we prove purity of lim−→ In(A) in the case that A is

essentially smooth over either Q or Z〈p〉 (Proposition (6.1)). When A is a local ring
of mixed-characteristic (0, p) with p 6= 2 (that is to say, the characteristic of the
fraction field K is 0 and the characteristic of the residue field is p) we will say that
A is essentially smooth over Z〈p〉 if A = Rp is the localization at a prime p ∈ specR
of a smooth and finite type Z〈p〉-algebra R = Z〈p〉[T1, T2, · · · , Tn]/I.

Lemma 6.1. If A is essentially smooth over Z〈p〉 for some prime p 6= 2 or over Q,
then the sequence

In(A)/In+1(A)→ In(K)/In+1(K)
⊕∂π→

⊕
x∈X(1)

In−1(k(x))/In(k(x))

is exact, where X = specA and K is the fraction field of A.

Proof. Let KM
n (A)/2 denote the “naive” Milnor K-theory defined exactly as for a

field. Kummer theory gives a “symbol map” KM
n (A)/2 → Hn

ét(A,Z/2) and in the
commutative diagram

KM
n (A)/2 //

��

KM
n (K)/2 //

��

⊕
x∈X(1) KM

n−1(k(x))/2

��

0 // Hn
ét(A,Z/2) // Hn

ét(K,Z/2) //
⊕

x∈X(1) H
n−1
ét (k(x),Z/2)

where X = specA and K is the fraction field of A, the lower row is exact as a
consequence of Gillet’s Gersten conjecture for étale cohomology in the Z〈p〉 case2,
and Bloch-Ogus in the Q-case. Furthermore, the Galois symbol

KM
n (A)/2→ Hn

ét(A,Z/2)

is surjective when A is essentially smooth over Q [Ker09, Ker10] and when A is
essentially smooth over a discrete valuation ring3 c.f. [Kah02, p.114, surjectivity of
the Galois symbol]. Applying the Milnor conjecture as proved by V. Voevodsky,
we have that the vertical maps in the middle and on the right are bijections. It
follows that the upper row is exact in the middle. Since 〈〈a, 1−a〉〉 = 0 in W (A) for
a ∈ A× such that 1− a ∈ A×, there is a well-defined homomorphism KM

n (A)/2→
In(A)/In+1(A). Hence, in the commutative diagram

KM
n (A)/2 //

��

KM
n (K)/2 //

��

⊕
x∈X(1) KM

n−1(k(x))/2

��

In(A)/In+1(A) // In(K)/In+1(K) //
⊕

x∈X(1) In−1(k(x))/In(k(x))

2Manuscript notes titled “Bloch-Ogus for the étale cohomology of certain arithmetic schemes”

distributed at the 1997 Seattle algebraic K-theory conference. Also, this follows from Thomas
Geisser’s proof of the Gersten conjecture for motivic cohomology [Gei04, This is explicitly stated
in the sentence after Theorem 1.2, because Rnε∗µ2 is the Zariski sheaf associated to the presheaf

U 7→ Hn
ét(U, µ2) and the affirmation of the Milnor conjecture allows one to identify the Gersten

complex for motivic cohomology with the Gersten complex for étale cohomology.]
3In a correspondence with the author, B. Kahn explained that the passage from surjectivity

in the essentially smooth over a field case to this case is easy and goes back to Lichtenbaum, if
you grant Gillet’s Gersten conjecture for étale cohomology.
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after using again the Milnor conjecture, by which the vertical maps in the middle
and on the right are bijections, we have that the lower row is exact in the middle. �

Lemma 6.2. Let A be essentially smooth over Z〈p〉, p 6= 2, or Q.

(1) There exists an integer N such that C•(A, Is, ι)
2→ C•(A, Is+1, ι) is an

isomorphism of complexes for all s ≥ N .
(2) The groups Hm(C•(A,W )) are 2N -torsion for all m ≥ 2.
(3) There exists an integer B ≥ 0 such that 2BH0(C•(A,W )) ⊂ i∗(W (A)),

where i∗ : W (A)→W (K) denotes the map induced by i : specK → specA.
(4) 2B+NH0(C•(A,W )) ⊂ i∗(IN (A))

Proof. To prove (1), note that the cohomological 2-dimension of k(x)[
√
−1] is

finite and for all points x, bounded, strictly less than some integer n. Using
the Arason-Pfister Haupsatz and the Milnor conjecture for fields it follows that
In(k(x)[

√
−1]) vanishes for all x, and from this it follows that, for all x, we have

an isomorphism Is(k(x))
2→ Is+1(k(x)) for all s ≥ n [EKM08, Corollary 35.27].

Hence C•(A, Is, ι)
2→ C•(A, Is+1, ι) is an isomorphism of complexes for all s ≥ N ,

where N := n+ dimX. Then C•(A, lim−→ In) and C•(A, IN , ι) are isomorphic com-

plexes, so the cohomology group Hm(C•(A, IN , ι)) vanishes when m ≥ 2 by Lemma
5.1. It follows that the groups Hm(C•(A,W )) are 2N -torsion when m ≥ 2 since

Hm(C•(A,W ))
2N→ Hm(C•(A,W )) factors

Hm(C•(A,W ))

2N

))

2N // Hm(C•(A,W ))

Hm(C•(A, IN , ι))

55

proving (2). Now to prove (3), let q ∈ H0(C•(A,W )). From the Balmer-Walter
spectral sequence for Witt groups [BW02] we have that W (A) surjects onto E0,0

∞
which consists of the elements in H0(C•(A,W )) mapped to zero under all the dif-
ferentials in the spectral sequence leaving H0(C•(A,W )). So it suffices to show
that some 2-power of q maps to zero under all of these finitely many non-trivial dif-
ferentials. The first non-trivial differential is d : H0(C•(A,W )) → H5(C•(A,W )).
Since 2NH5(C•(A,W )) = 0, we have that d(2Nq) = 0. Repeating this argument for
each non-trivial differential d : H0(C•(A,W )) → H4∗+1(C•(A,W )) we eventually
find some 2-power 2B , which does not depend on q, such that 2Bq is in the kernel of
all differentials, hence is in E0,0

∞ . Finally, to prove (4), let q ∈ 2B+NH0(C•(A,W )).
Write it as q = 2B+Nqunr for some qunr ∈ H0(C•(A,W )). By (3) we have that
2Bqunr = i∗(Q) for some Q ∈ W (A). So i∗(2

NQ) = q and 2NQ ∈ IN (A). This
proves 2B+NH0(C•(A,W )) ⊂ i∗(IN (A)), finishing the proof of the Lemma. �

Proposition 6.1. Let A be essentially smooth over either Z〈p〉, p 6= 2, or Q. The
sequence

lim−→ In(A)→ lim−→ In(K)
⊕∂π→

⊕
x∈X(1)

lim−→
n≥−1

In(k(x))

is exact, where lim−→n≥−1
In(k(x)) denotes the colimit over

W (k(x))
〈〈−1〉〉→ W (k(x))

〈〈−1〉〉→ I(k(x))
〈〈−1〉〉→ I2(k(x))

〈〈−1〉〉→ · · ·
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.

Proof. Let q in the kernel of the residue, hence q ∈ H0(C•(A, IN , ι)) for some
N ≥ 0. We may assume that N is the integer N from Lemma 6.2 (1) by either
multiplying by 2 or dividing by 2 as needed. Using Lemma 6.1 we find QN ∈
IN (A)/IN+1(A) which we may then lift to obtain a QN ∈ IN (A) satisfying q −
i∗(QN ) ∈ H0(C•(A, IN+1, ι)). By repeating this argument we find that q−i∗(QN+
QN+1 +· · ·+QB+2N−1) ∈ H0(C•(A, IB+2N , ι)) where B is the integer from Lemma
6.2 (3). Since we are in the “stable” range we have that H0(C•(A, IB+2N , ι)) =
2B+NH0(C•(A, IN , ι)) ⊂ 2B+NH0(C•(A,W )) ⊂ i∗(IN (A)), where we used Lemma

6.2 (4) to obtain the rightmost inclusion. Hence we have a Q
′

N ∈ IN (A) such that

q = i∗(QN +QN+1 + · · ·+QB+2N−1 +Q
′

N )

where QN +QN+1 + · · ·+QB+2N−1 +Q
′

N ∈ IN (A). This finishes the proof. �

7. On the signature: Local case

In this section we use “Hoobler’s trick” which is a method due to R. Hoobler
[Hoo06] for passing from the smooth geometric case to the geometric case for many
questions involving cohomological invariants satisfying “rigidity” in the sense of the
following Lemma.

Lemma 7.1. If B is a local ring and (B, I) a henselian pair such that 2 is invertible
in both B and B/I, then for all integers n ≥ 0, the homomorphisms of groups

In(B)→ In(B/I)

and
In(B)/In+1(B)→ In(B/I)/In+1(B/I)

induced by the surjection B → B/I are bijections.

Proof. Let B a local ring and (B, I) a henselian pair such that 2 is invertible in
both B and B/I. Considering the diagram

0 // In+1(B) //

��

In(B) //

��

In(B)/In+1(B)

��

// 0

0 // In+1(B/I) // In(B/I) // In(B/I)/In+1(B/I) // 0

we see that, by the two out of three lemma, it is sufficient to prove that In(B) →
In(B/I) is a bijection for all n ≥ 0. To prove injectivity for all n ≥ 0, note that as
In(B) is contained in W (B), it suffices to prove that W (B)→W (B/I) is injective.

We claim that the assignment b+I 7→ b determines a well-defined map (B/I)×/(B/I)×
2 →

B×/B×
2
. This claim follows from rigidity for étale cohomology due to Strano and

Gabber independently but one may also prove it directly from the definition of
Henselian pair 4: let b1, b2 ∈ B× such that b1 + I = b2 + I; the polynomial T 2 − b1

b2

has image T 2 − 1 in B/I[T ]; as (B, I) is a henselian pair, from the factorization
T 2−1 = (T−1)(T+1) in B/I[T ] we obtain a factorization T 2− b1

b2
= (T−a)(T+a)

in B[T ], for some a ∈ B; hence b1 = a2b2 for some a ∈ B×, that is, b1 = b2 in
B×/(B×)2. The claim follows. Next recall that for any semilocal ring A, the Witt

4The author learned this from a recent preprint of Stefan Gille titled On quadratic forms over
semilocal rings
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group W (A) is a quotient of the group ring Z[A×/A×
2
] modulo the set of relations

R additively generated by [1] + [−1] and all elements

h∑
i=1

[ai]−
h∑
i=1

[bi]

satisfying

⊥hi=1 〈ai〉 '⊥hi=1 〈bi〉
with h = 4 [Kne77, Ch. 2, §4, Theorem 2]. Hence, in the commutative diagram
below

0 // R // Z[B×/B×
2
] // W (B) // 0

0 // R

OO

// Z[(B/I)×/(B/I)×
2
] //

OO

W (B/I) // 0

the rows are exact. Thus we obtain a well-defined map of cokernels W (B/I) →
W (B) such that the composition W (B)→ W (B/I)→ W (B) is the identity. This
proves the desired injectivity. The composition W (B/I) → W (B) → W (B/I)
is the identity hence W (B) → W (B/I) is surjective. To prove surjectivity of
In(B) → In(B/I) for all n ≥ 0, recall that In(B/I) is additively generated by
Pfister forms 〈〈b1, b2, . . . , bn〉〉 where b1, b2, . . . bn are units in B/I [Bae78, Ch. V,
Section 1, Remark 1.3]. For any Pfister form 〈〈b1, b2, . . . , bn〉〉 we may lift the bi to
units bi of B to obtain an element 〈〈b1, b2, . . . , bn〉〉 ∈ In(B) mapping to it, proving
surjectivity of In(B)→ In(B/I) and finishing the proof of the lemma. �

Proposition 7.1. If A is a local ring with 2 ∈ A×, then the signature map

lim−→ In(A)→ C(sperA,Z)

is a bijection.

Proof. As both groups respect filtered colimits, it suffices to consider the case where
A is a localization of a finite type Z-algebra: any local ring may be written as a
union of its finitely generated subrings Aα; pulling back the maximal ideal of A over
Aα → A yields a prime ideal pα ∈ specAα; localizing the Aα with respect to these
primes yields a directed system of local rings Apα and taking the direct limit yields
A. From now on we assume A = Rp, where p ∈ specR and R = Z[T1, T2, · · · , Tn]/I
for some ideal I. We obtain a henselian pair (B, I) for A as follows: let s denote
the quotient map Z[T1, T2, · · · , Tn] → R and let B0 := Z[T1, T2, · · · , Tn]s−1(p) and
similarly I0 := Is−1(p); let B denote the henselization of B0 along I0 and I :=
I0B. Recall, the henselization along I0 is obtained by taking the colimit over the
directed category consisting of those étale B0-algebras C having the property that
B0/I0 → C/I0C is an isomorphism. The map B0 → B induces on quotients
A = B0/I0 → B/I an isomorphism of local rings. In the commutative diagram
below, the horizontal maps induced by the surjection B → B/I ' A

lim−→ In(B)

sign

��

// lim−→ In(A)

sign

��

C(sperB,Z) // C(sperA,Z)
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are isomorphisms for the powers of the fundamental ideal (Lemma (7.1)) and for
real cohomology5. Therefore it suffices to prove bijectivity for B. We claim that
the local ring B is a filtered colimit of local rings which are essentially smooth
over either Z〈p〉, p 6= 2, or over Q. In order to prove the claim, first note that

the pullback of s−1(p) ∈ specZ[T1, T2, · · · , Tn] over Z→ Z[T1, T2, · · · , Tn] yields a
prime 〈p〉 ∈ specZ and localizing with respect to this prime induces Z〈p〉 ↪→ B0.
When 〈p〉 = 0 it follows that B0 contains Q, otherwise B0 contains Z〈p〉, p 6= 2.
The morphisms Z〈p〉 → B0 and B0 → B are both flat with geometrically regular
fibers, hence the composition Z〈p〉 → B has these properties. Then it follows from
Popescu’s theorem that B is a filtered colimit of either smooth Z〈p〉-algebras or
Q-algebras Aα. Pulling back the maximal ideal over Aα → B and localizing one
obtains the statement of the claim. Thus, we may assume that B is essentially
smooth over Q or Z〈p〉. Then we map apply Lemma (4.3) to get exactness of the
lower row in the commutative diagram below

0 // lim−→ In(B) //

��

lim−→ In (K)
⊕∂π//

sign

��

⊕
x∈Y (1) lim−→n≥−1

In(k(x))

2sign

��

0 // C(sperB,Z) // C(sperK,Z)
⊕βπ //

⊕
x∈Y (1) C(sper k(x),Z)

where Y = specB. We have exactness of the upper row by Proposition (6.1) and
Corollary (5.1). Using the bijection of Proposition (2.5) we get that the middle
vertical map in the diagram above is bijective and the rightmost vertical map is
injective. The square on the right commutes by Lemma (3.3), hence lim−→ In(B) →
C(sperB,Z) is bijective, finishing the proof of the theorem. �

The following corollary is well-known as mentioned in the introduction.

Corollary 7.1. Let A be a local ring with 2 ∈ A×. Then the signature induces an
isomorphism

W (A)[
1

2
]→ C(sperA,Z)[

1

2
]

Proof. From the preceding theorem we have that any f ∈ C(sperA,Z) has 2nf =

sign (Q) for some Q ∈ In(A) ⊂ W (A), proving surjectivity, and that for any Q
′ ∈

W (A), if sign (Q
′
) = 0 then 2nQ

′
= 0 for some n, proving injectivity. �

Remark 7.2. Let A =
⊕

n≥0An be a Z+-graded ring and let s ∈ A1 be a homo-
geneous element of degree 1. Recall that the homogeneous localization A(s) is the

subring of degree zero elements in the localization of A with respect to {1, s, s2, · · · },
and that A(s) ' A/(s−1)A as rings. Furthermore, A(s), may be obtained by taking

the direct limit of the sequence A0
s→ A1

s→ A2
s→ · · · .

Corollary 7.2. Let A be a local ring with 2 invertible.

5The following proof was communicated to the author by C. Scheiderer: every point in sperB
specializes to a point in sperB/I by the henselian property; since any real spectrum is a ”normal”
spectral space, meaning that every point of Xr specializes to a unique closed point, the restriction

map in sheaf cohomology H∗(Xr,F) → H∗((Xr)max,F) is an isomorphism for every sheaf F
on any scheme X; thus restriction gives isomorphisms H∗(sper (B),F)→ H∗(sper (B)max,F)

'←
H∗(sper (B/I),F).
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(1) Let I∗(A)〈〈−1〉〉 denote the homogeneous localization of the graded ring
⊕

n≥0 I
n(A)

with respect to the element 〈〈−1〉〉 = 〈1, 1〉 ∈ I(A). The signature defines
an isomorphism of rings

I∗(A)〈〈−1〉〉 ' C(sperA,Z)

(2) Let I∗(A)〈〈−1〉〉 denote the homogeneous localization of the graded ring
⊕

n≥0 I
n(A)

with respect to 〈〈−1〉〉 = 〈1, 1〉 ∈ I1(A), where In(A) := In(A)/In+1(A).
The signature defines an isomorphism of rings

I∗(A)〈〈−1〉〉 ' C(sperA,Z/2)

Proof. Recall (Remark 7.2) that one may identify lim−→ In(A) with I∗(A)〈〈−1〉〉: Using

the direct sum construction of the direct limit lim−→ In(A) the relations one finds

are the same as the relations defining the localization I∗(A)〈〈−1〉〉; Explicitly, the
isomorphism ϕ : lim−→ In(A) → I∗(A)〈〈−1〉〉 is given by ϕn : In(A) → I∗(A)〈〈−1〉〉
defined by

q 7→ q

〈〈−1〉〉n

and consequently we obtain using the preceding proposition that the assignment

q

〈〈−1〉〉n
7→ sign (q)

2n

where q ∈ In(A) defines an isomorphism from I∗(A)〈〈−1〉〉 to C(sperA,Z). To
prove (2), we obtain the desired isomorphism as an isomorphism of cokernels in the
commutative diagram below

0 // lim−→n≥1
In(A) //

��

lim−→ In(A) //

��

lim−→ In(A) //

��

0

0 // C(sperA, 2Z) // C(sperA,Z) // C(sperA,Z/2) // 0

where lim−→n≥1
→ C(sperA, 2Z) is an isomorphism since in the commutative diagram

lim−→n≥1
In(A) // C(sperA, 2Z)

lim−→ In(A) //

〈〈−1〉〉
OO

C(sperA,Z)

2

OO

the vertical maps are isomorphisms as is the lower horizontal map. �

Corollary 7.3. Let A be a local ring with 2 invertible. Let H∗ét(A,Z/2)(−1) de-
note the homogeneous localization of the cohomology ring

⊕
n≥0H

n
ét(A,Z/2Z) with

respect to (−1) ∈ H1
ét(A,Z/2Z). Then the nth cohomological invariant en : In →

Hn
ét(A,Z/2), which assigns the class of a Pfister form 〈〈a1, · · · , an〉〉 to the cup

product (a1) ∪ · · · ∪ (an) determines a well-defined homomorphism

e∗ : I∗(A)〈〈−1〉〉 ' H∗ét(A,Z/2)(−1)

which is an isomorphism of rings.
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Proof. For any local ring A essentially smooth over Z〈p〉 or Q, the diagram com-
mutes

In(A) //

��

In(K) //

��

⊕
x∈X(1) In−1(k(x))/2

��

0 // Hn
ét(A,Z/2) // Hn

ét(K) //
⊕

x∈X(1) H
n−1
ét (k(x))

and the lower row is exact as the Gersten conjecture is known for étale cohomology
in this case. As the diagram commutes it follows that In(A)/In+1(A) maps into
Hn(A,Z/2). Let en denote this map. As the lower row is exact, it has the descrip-
tion asserted on Pfister forms. Using rigidity and the fact that both groups respect
filtered colimits as we did in the proof of Theorem (8.5) we obtain the map en for
any local ring, and after localizing, we obtain the map in the commutative diagram
below

I∗(A)〈〈−1〉〉

'

((

e∗ // H∗ét(A,Z/2)(−1)

'
��

C(sperA,Z/2)

where we use that for any semi-local ring A with 2 invertible the signature modulo
2 defines an isomorphism

(10) H∗ét(A,Z/2)(−1)
'→ C(sperA,Z/2)

of rings. This is due to J. Burési and L. Mahé in the semi-local case [Mah95,
Bur95] and C. Scheiderer in general [Sch94, Corollary (7.10.3) and (7.19)]. From
the isomorphisms in the diagram, the desired isomorphism follows. �

8. Globalization

In this section X will always denote a scheme. Let W (X) denote the Witt ring
of symmetric bilinear forms over X c.f. [Kne77].

Definition 8.1. Recall that the global signature is the ring homomorphism

sign : W (X)→ H0(Xr,Z)

that assigns an isometry class [φ] of a symmetric bilinear form φ over X to the
function on Xr defined by

sign ([φ])(x, P ) := sign P ([i∗xφ])

where ix : x→ X is any point and P is any ordering on k(x) c.f. [Mah82].

Definition 8.2. There is a well-defined ring homomorphismW (X)→ H0
ét(X,Z/2Z),

called the rank, which assigns an isometry class of a symmetric bilinear form [E , φ]
over X to the rank of its underlying vector bundle E modulo 2 c.f. [Kne77, Chapter
1, §7]. The kernel of the rank map is called the fundamental ideal and is denoted
by I(X).
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It follows from the definitions that the diagram below commutes.

(11) W (X)

Rank mod 2

��

sign
// H0(Xr,Z)

��

H0
ét(X,Z/2Z)

h0 // H0(Xr,Z/2Z)

where h0 denotes the signature modulo 2 defined as follows: if α ∈ H0
ét(X,Z/2Z)

and ξ : x→ X is the inclusion of a “real” point, that is, for some (x, P ) ∈ Xr, then
h0(α) evaluated at ξ is ξ∗α ∈ H0(xét,Z/2Z) = Z/2Z; write α(ξ) for this element
of Z/2Z, so h0(α) is the locally constant map Xr → Z/2Z, ξ 7→ α(ξ) c.f. [Sch94,
(7.19.1)].

Definition 8.3. As there is an exact sequence

0→ H0(Xr, 2Z)→ H0(Xr,Z)→ H0(Xr,Z/2Z)

one finds using commutativity of Diagram (11) that the restriction of the signature
to I(X) defines the homomorphism of groups below.

I(X)→ H0(Xr, 2Z)

For n ≥ 0, let In(X) denote the powers of the fundamental ideal and I0(X) =
W (X). Since the global signature is a ring homomorphism that maps elements of
I(X) into H0(Xr, 2Z), it follows that for any n ≥ 0 it induces a homomorphism

In(X)→ H0(Xr, 2
nZ)

of groups. Moreover, multiplication by 2 = 〈〈−1〉〉 ∈ I(X) induces a homomorphism

In(X)
〈〈−1〉〉→ In+1(X) such that the diagram below commutes.

Ij(X)
sign

//

〈〈−1〉〉
��

H0(Xr, 2
jZ)

2

��

Ij+1(X)
sign

// H0(Xr, 2
j+1Z)

Hence, we obtain a homomorphism

lim−→ In(X)→ H0(Xr,Z)

where lim−→ In(X) denotes the direct limit of the sequence W (X)
〈〈−1〉〉→ I(X)

〈〈−1〉〉→

I2(X)
〈〈−1〉〉→ · · · of groups.

Definition 8.4. It follows from Lemma (4.1) that supp∗ Z is the Zariski sheaf U 7→
H0(Ur,Z) on X. Recall that In denotes the Zariski sheaf on X associated to the
presheaf U 7→ In(U). For any integer n ≥ 0, the restriction of the global signature
to the powers of the fundamental ideal of Definition (8.3) induces a homomorphism

In → supp ∗2
nZ

of Zariski sheaves on X. Similarly, In(X)
〈〈−1〉〉→ In+1(X) induces a homomorphism

In 〈〈−1〉〉→ In+1 of sheaves for any n ≥ 0, and a homomorphism of sheaves

lim−→ In → supp ∗Z
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where lim−→ In denotes the direct limit of the sequence of sheaves W 〈〈−1〉〉→ I 〈〈−1〉〉→

I2 〈〈−1〉〉→ · · · Similarly, the signature induces a morphism of sheaves

W[
1

2
]→ supp ∗Z[

1

2
]

where W[ 1
2 ] is the sheaf associated to the presheaf U 7→ W (U)[ 1

2 ] and supp ∗Z[ 1
2 ]

is the sheaf U 7→ H0(Ur,Z[ 1
2 ])

Theorem 8.5. Let X be a scheme with 2 invertible in its global sections.

(1) The signature morphism of sheaves of Definition (8.4)

(12) lim−→I
n → supp∗ Z

is an isomorphism.
(2) The signature morphism of sheaves of Definition (8.4)

(13) W[
1

2
]→ supp ∗Z[

1

2
]

is an isomorphism.
(3) The signature induces an isomorphism of short exact sequence of sheaves

on X

0 // lim−→I
n //

��

W[ 1
2 ] //

��

lim−→W/In //

��

0

0 // supp ∗Z // supp ∗Z[ 1
2 ] // supp ∗(Z[ 1

2 ]/Z) // 0

whereW/In denotes the sheaf associated to the presheaf U 7→ W(U)/In(U).
(4) The signature induces an isomorphism of short exact sequence of sheaves

on X

0 // lim−→I
n
〈〈−1〉〉

//

��

lim−→I
n //

��

lim−→I
n //

��

0

0 // supp ∗Z
2 // supp ∗Z // supp ∗Z/2 // 0

where In denotes the sheaf associated to the presheaf U 7→ In(U)/In+1(U).

Proof. Statements (1) and (2) follow immediately from the local case, Proposition
(7.1) and Corollary (7.1) respectively, as it is sufficient to prove that they induce an
isomorphism on stalks. As supp∗ is exact, statements (3) and (4) may be obtained
by applying supp∗ to the analogous short exact sequences of groups and then using
the two out of three lemma to conclude, but for (4), one should note that

lim−→I
n 〈〈−1〉〉→ lim−→

n≥1

In

is an isomorphism in order to obtain exactness of the top row of the diagram in
(4). �

The next corollary is an immediate consequence of the previous theorem and
Lemma (4.1).

Corollary 8.1. Let X be a scheme with 2 invertible.
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(1) For any m ≥ 0, the morphism (12) induces an isomorphism of cohomology
groups

Hm
Zar(X, lim−→I

n)→ Hm(Xr,Z)

(2) For any m ≥ 0, the morphism (13) induces an isomorphism of cohomology
groups

Hm
Zar(X,W[

1

2
])→ Hm(Xr,Z[

1

2
])

Corollary 8.2. Let X be a scheme with 2 invertible which is quasi-separated and
quasi-compact. Then, there is an isomorphism of cohomology groups for all m ≥ 0⊕

m≥0

Hm
Zar(X, lim−→I

n) ' lim−→Hn
ét(X,Z/2)

Proof. Under the hypotheses stated C. Scheider has proved [Sch94, Corollary (7.19)]
that there is an isomorphism

lim−→Hn
ét(X,Z/2)

'→
⊕
m≥0

Hm(Xr,Z/2)

and from Theorem 8.5 one has an isomorphism Hm
Zar(X, In)

'→ Hm(Xr,Z/2) for
all m ≥ 0. Thus one obtains the isomorphism stated. �

Corollary 8.3. If X is a real variety, by which we mean a scheme which is sepa-
rated and of finite type over R, and the Krull dimension of X is d, then whenever
n ≥ d+ 1 the signature induces an isomorphism in cohomology

Hm
Zar(X, In)

sign
' Hm

sing(X(R),Z)

for all integers m ≥ 0 and an isomorphism of long exact sequences as stated in the
introduction.

Proof. It suffices to see that the morphism of sheaves In 〈〈−1〉〉→ In+1 is an isomor-
phism for n ≥ d + 1, for then multiplication by 2d+1 defines an isomorphism of
sheaves Id+1 ' lim−→I

n and hence we obtain the statement of the corollary using

Theorem 8.5 in view of Remark (4.3). When n ≥ d + 1, for any U open in X we
have an isomorphism of kernels in the diagram of residues below

0 // In(U) //

2

��

In(K) //

2

��

⊕
x∈X(1) In−1(k(x))

2

��

0 // In+1(U) // In+1(K) //
⊕

x∈X(1) In(k(x))

since the two rightmost vertical maps are isomorphisms for n ≥ d+1, which proves
the desired isomorphism. �
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Lefschetz locaux et globaux (SGA 2), Documents Mathématiques (Paris) [Mathemat-
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