
FINITENESS THEOREMS FOR THE SHIFTED WITT AND

HIGHER GROTHENDIECK-WITT GROUPS OF ARITHMETIC

SCHEMES

JEREMY JACOBSON

Abstract. For smooth varieties over finite fields, we prove that the shifted

(aka derived) Witt groups of surfaces are finite and the higher Grothendieck-
Witt groups (aka Hermitian K-theory) of curves are finitely generated. For
more general arithmetic schemes, we give conditional results, for example,
finite generation of the motivic cohomology groups implies finite generation of

the Grothendieck-Witt groups.

Introduction

The Witt group W (X) of a scheme X was introduced by Knebusch [Kne77,
Chapter 1 §5] in the seventies. When k is a field having characteristic different
from 2, W (Spec(k)) is the classical Witt group of quadratic forms over k. For
varieties over finite fields, little is known in general about the Witt group, except
that it is a torsion group (for example, see Corollary 3.3). One important result
states that, when X is a complete regular curve over a finite field of characteristic
different from 2, the Witt group is a finite group [AEJ94, Theorem 3.6].
More recently, the Witt group was revealed to be a part of a cohomology theory

Wn(X) for schemes. When 2 is invertible onX, each shifted Witt group Wn(X) can
be constructed as the “triangular” Witt group [Bal00, Bal01a] of the triangulated
category Db(Vect(X)) equipped with the shifted duality Hom(−,OX [n]), where
Db(Vect(X)) denotes the bounded derived category of vector bundles Vect(X) on
X. Recall the 4-periodicity, Wn(X) ≃Wn+4(X), and that they recover the classi-
cal Witt group as W (X) ≃W 0(X).
The first motivation for writing this article was to study the question of finite-

ness of these Wn for varieties over finite fields. We prove that when X is a smooth
surface over a finite field of characteristic different from 2, the shifted Witt groups
Wn(X) are finite (see Theorem 3.10). In higher dimensions, we give conditional
results. Theorem 3.11 states that, for X a finite type Z[ 12 ]-scheme with no residue
field of X formally real, if the motivic cohomology groups of X with mod 2 coef-
ficients Hm

mot(X,Z/2Z(n)) are finite groups, then the shifted Witt groups Wn(X)
are finite. Furthermore, we give partial converses to this last result. We prove that
for certain arithmetic schemes of dimension less than four, finiteness of the shifted
Witt groups is equivalent to finiteness of the mod 2 motivic cohomology groups
Hm

mot(X,Z/2Z(n)) (see Theorem 3.13).
The argument that we use for these results is essentially that of [AEJ94], but sig-

nificantly strengthened by the fact that we now can use Voevodsky’s solution of the
Bloch-Kato conjecture. Indeed, let X be a smooth variety over a field of character-
istic different from 2. Using Bloch-Kato, Gille noted that his graded Gersten-Witt
spectral sequence relates étale cohomology to the Witt groups [Gil07, §10.7]. When
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the base field is C, Totaro also used this spectral sequence, noting that it easily
gave Parimala’s theorem, equating finiteness of CH2(X)/2CH2(X) to finiteness of
W 0(X) [Tot03, Theorem 1.4]. Here, we adapt these ideas to the arithmetic set-
ting (smooth schemes over Z[ 12 ]) using Arason’s Theorem (Theorem 2.5). Also, we
apply the positive solution of the Kato conjecture to relate finiteness of motivic
cohomology with mod 2 coefficients to finiteness of the Witt groups for varieties
having dimension as high as 4 (see Proposition 1.15 and Lemma 1.21 which lead to
Theorem 3.13).
The second motivation relates to Schlichting’s Grothendieck-Witt groups of schemes

[Sch10a]. They form a bigraded cohomology theory GWn
m(X) for schemes which

generalizes Knebusch’s Grothendieck-Witt group L(X) of a scheme X [Kne77,
Chapter 1 §4] with L(X) ≃ GW 0

0 (X) [Sch10a, Proposition 4.11]. They are the
algebraic analogue of real topological K-theory in the same way that algebraic K-
theory is the algebraic analogue of complex topological K-theory. A major goal is
to understand the Grothendieck-Witt groups of schemes at the same level as the
higher algebraic K-groups Km(X).
Recall that the Bass conjecture states that the higher algebraicK-groupsKm(X)

of a regular finite type Z-scheme X are finitely generated as abelian groups [Kah05,
§4.7.1 Conjecture 36]. There are two main results on this conjecture:

(a) When dim(X) ≤ 1, Quillen proved the conjecture [Kah05, §4.7.1 Proposi-
tion 38 (b)];

(b) The “motivic” Bass conjecture, that is, finite generation of the motivic
cohomology groups Hm

mot(X,Z(n)) [Kah05, See §4.7.1 Conjecture 37], im-
plies the Bass conjecture. This follows from the Atiyah-Hirzebruch spectral
sequence [Kah05, §4.3.2 Equation (4.6) and the final paragraph of §4.6].

The second motivation for this article was to attempt to reproduce for the
Grothendieck-Witt groups the two results above about K-theory. Regarding the
Hermitian analogue of (a), finite generation of the Grothendieck-Witt groups was
known to follow (e.g.Karoubi induction [BK05, Proposition 3.5]) from finiteness of
the shifted Witt groups and finite generation of the higher algebraic K-groups. So,
one immediate corollary of the finiteness result for Witt groups is a finite gener-
ation result for the Grothendieck-Witt groups of curves over finite fields. For the
analogue of (b), up to the condition that we must assume that no residue field of
X is formally real, we are successful. These results appear in Section 4.
Finally, a finiteness result for the Chow-Witt groups appears in Section 5. It

has been observed (e.g. [Hor08], [FS09]) that the Chow-Witt groups appear on the
second page of the coniveau spectral sequence for the p-th shifted Grothendieck-

Witt groups as Ep,−p
2

∼= C̃H
p
(X). For the usual Chow groups, they appear in a

similar way in the coniveau spectral sequence converging to K-theory, and there is
a classical finiteness result stating that the d-th Chow group CHd(X) of a quasi-
projective variety of dimension d over a finite field is finite [KS10, Corollary 9.4

(1)]. The result given here is the Chow-Witt analogue, stating that C̃H
d
(X) is

finite (Theorem 5.3).
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1. Kato complexes, Kato cohomology, and motivic cohomology

For a very general class of schemes Kato [Kat86a, §1] introduced complexes that
generalized to higher dimensions classical exact sequences for Galois cohomology.
He made some conjectures on their exactness in various situations. In this section,
we recall some finiteness results about their cohomology that are easily obtained
using finiteness of étale cohomology, and we explain their relation to motivic coho-
mology.

1.1. Kato complexes. First a remark about the implications of assuming 2 is
invertible.

Remark 1.1. Recall that when X is a scheme, we say that 2 is invertible on X
when 2 is a unit in the global sections Γ(X,OX).

(a) When X is of finite type over Z, saying that 2 is invertible on X is the
same as saying that X is of finite type over Z[ 12 ]. Furthermore, when X is
of finite type over Fp (p > 2), it follows that 2 is invertible on X and that
X is of finite type over Z (as Fp is of finite type over Z, and compositions
of finite type morphisms are of finite type), hence X is of finite type over
Z[ 12 ].

(b) From the assumption 2 is invertible on X, it also follows that each residue
field k(x) of X has characteristic different from 2, and that there is an iso-
morphism of Gal(k(x)s|k(x))-modules, Z/2Z ≃ µ2 :=

{
a ∈ k(x)s|a

2 = 1
}
,

where k(x)s denotes a separable closure of k(x).
(c) When 2 is invertible on X, in the global sections −1 6= 1, so −1 determines

an isomorphism of étale sheaves µ2 ≃ Z/2Z, hence µ⊗n
2 is isomorphic to

Z/2Z. Recall that on a scheme X, isomorphisms between the étale sheaf µ2

and the constant sheaf Z/2Z correspond to global sections of X which have
order 2 on each connected component [Tam94, see p.100 for definitions and
details].

Next, we recall what we mean by the residue and corestriction maps.

Definition 1.2. Let A be a discrete valuation ring (DVR) with fraction field K
and residue field k. Assume that char(k) 6= 2. By the residue homomorphism for
A, we mean the group homomorphism from the Galois cohomology of K to the
Galois cohomology of the residue field k

∂n : H
n
Gal (K,Z/2Z)→ Hn−1

Gal (k,Z/2Z) ,

as defined in [Kat86a, p.149]. Note that this is the same as the definition given in
[Ara75, p.475]. When n = 0, we set Hn−1 (k,Z/2Z) = 0.
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Definition 1.3. Let F be a finite extension of a field L. By the corestriction
homomorphism for the finite extension L/K, we mean the group homomorphism

corL/K : Hn
Gal (L,Z/2Z)→ Hn

Gal (K,Z/2Z) ,

as defined in [Ara75, p.471]. This agrees with the definition used by Kato in
[Kat86a].

Recall that a locally noetherian scheme X is said to be excellent [Gro65, Defini-
tion 7.8.5]) if for some covering of X by affine schemes Uα =Spec(Aα), each of the
rings Aα are excellent [Gro65, Definition 7.8.2].
The next example is important for understanding the definition of the differen-

tials in the Kato complex.

Example 1.4. Let X be a noetherian excellent scheme, let y ∈ X be a point
of X, and let Z := {y} denote the reduced closed subscheme with underlying

topological space {y}. Since X is excellent, every locally finite-type X-scheme X
′

is excellent [Gro65, Proposition 7.8.6]. In particular, the closed immersion Z → X
is excellent. Therefore, Z is an integral excellent scheme. For an integral excellent
ring A, its integral closure in Frac(A) is a finite A-algebra [Gro65, Scholie 7.8.3].

It follows that the normalization morphism Z
′

→ Z is finite. In particular, the
normalization is quasi-finite, so the fiber over any point x ∈ Z has only finitely
many points x1, . . . , xn and for each of the xi the field extension κ (xi) /κ (x) is a
finite extension.

Definition 1.5. Let X be a scheme. Recall that the dimension of a point x ∈ X is
defined to be the (combinatorial) dimension dim(x) := dim({x}) of the topological
space defined by the closure of x. The set of dimension p points of X is denoted
by Xp. The codimension of a point x ∈ X is defined to be the Krull dimension
codim(x):=dim(OX,x) of the local ring of X at the point x ∈ X. This is equal to

the topological codimension of the closed subspace {x} in X [Gro65, Proposition
5.12]. The set of codimension p points of X will be denoted by Xp.

Definition 1.6 (The yx-component ∂yx of the differential). Let X be a noether-
ian excellent scheme with 2 invertible. Recall the facts of Example 1.4. Let
x ∈ Xp+1 and y ∈ Xp such that x ∈ {y}. Let Z := {y} denote the reduced

closed subscheme with underlying topological space {y}. Let Z
′

→ Z be the nor-
malization of Z. The field extensions κ (xi) /κ (x) for each of the finitely many

points x1, . . . , xn ∈ Z
′

lying over x ∈ Z are finite extensions, so for all non-
negative integers j ∈ Z, there are well-defined corestriction maps (Definition 1.3)

corκ(xi)/κ(x) : H
j (κ (xi) ,Z/2Z) → Hj (κ (x) ,Z/2Z). Each xi ∈ Z

′

is of codimen-

sion 1 in Z
′

(use the dimension formula [Mat89, Theorem 15.6] together with the
fact that the extension κ (xi) /κ (x) is finite, hence of transcendence degree 0). So
the localization OZ′ ,xi

of the normalization at the point xi is a DVR, with fraction

field κ (y) and residue field κ (xi). Hence, each xi defines residue homomorphisms
(Definition 1.2)

∂xi : Hj
Gal (κ (y) ,Z/2Z)→ Hj−1

Gal (κ (xi) ,Z/2Z)

for all non-negative integers j ∈ Z. The yx-component dyx is defined (c.f. [Jan,
§0.6]) as

dyx :=
∑

xi|x

corκ(xi)/κ(x) ◦ ∂
xi ,

where the sum is taken over the finitely many points xi ∈ Z
′

lying over x.
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Definition 1.7 (cohomological Kato complexes). Let X be a noetherian excellent
scheme, finite dimensional of dimension d. We assume that 2 is invertible on X
(this is not necessary for the definition in general). It follows from this assumption
that for every n ≥ 0 the Tate twist µ⊗n

2 is isomorphic to the constant sheaf Z/2Z
(see Remark 1.1 (b)). The n-th Kato complex is defined to be the complex

C(X,Hn) :=
⊕

x∈X0

Hn(κ(x),Z/2Z)→
⊕

x∈X1

Hn−1(κ(x),Z/2Z)→ · · ·

· · · →
⊕

x∈Xd

Hn−d(κ(x),Z/2Z),

where κ (x) denotes the residue field of a point x ∈ X, and we setHm(κ(x),Z/2Z) =
0 for m < 0. Kato complexes are often indexed homologically, but here we will al-
ways use cohomological indexing by placing the term summing over the codimension
p points in degree p. The m-th cohomology of the n-th Kato complex C(X,Hn)
will be denoted by Hm(C(X,Hn)). The differential is defined componentwise. The
yx-component ∂yx

i : Hi (κ (y) ,Z/2Z) → Hi−1 (κ (x) ,Z/2Z) of the i-th differential

is defined as follows: If x /∈ {y}, then set dyx = 0. If x ∈ {y}, then dyx is defined
as in Definition 1.6.

Remark 1.8. When X is a variety over a field, by definition the Kato complexes
are the same as Rost’s cycle complexes for the cycle module defined by Galois
cohomology [Ros96, see §2.10 for the definition of the differential, as well as Remark
(2.5)].

Finally, we recall some conditions under which dimension can be replaced by
codimension in the definition of the Kato complexes.

Definition 1.9. Let X be a scheme. The scheme X is said to be biequidimensional
[Gro64, §14 p.11] if it is finite dimensional, equidimensional (aka pure, i.e. the di-
mension of each irreducible component is the same), equicodimensional (the codi-
mension of each minimal closed irreducible set in X is the same), and catenary (see
[Gro64, §14 p.11]).

Lemma 1.10 (Corollaire 14.3.5 EGA IV Premiére Partie). For any noetherian
biequidimensional scheme X of dimension d and for any point x ∈ X, the dimension
and codimension of x are related as follows: dim(x) = d − codim(x). That is for
any p, the set of dimension p points of X is equal to the set of codimension d − p
points Xp = Xd−p.

Remark 1.11. There are examples of schemes which are regular (hence catenary)
and integral (hence equidimensional) possessing points x for which dim(x)+codim(x)
is not equal to the dimension of the scheme [Gro65, Remark 5.2.5 (i)]. However,
when X is a variety over a field, pure of dimension d, it is biequidimensional [Gro65,
follows from Proposition 5.2.1].

1.2. Relation to étale cohomology. Jannsen, Saito, and Sato showed that for
very general schemes, the Kato complexes appear on the first page of the étale
niveau spectral sequence. As we restate their result slightly to suit our purposes,
we recall briefly their proof.

Proposition 1.12. [Jan, Section 1.5 and Theorem 1.5.3] Let X be a noetherian
regular excellent Z[ 12 ]-scheme, pure of dimension d. Filtering by codimension of
support gives a convergent spectral sequence

Ep,q
1 (X,Z/2Z) :=

⊕

x∈Xp

Hq−p
ét (κ (x) ,Z/2Z) =⇒ Hp+q

ét (X,Z/2Z).
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with differential dr of bidegree (r, 1 − r). Furthermore, the complexes appearing
on the first page of the spectral sequence E1

∗,q (X,Z/2Z) agree up to signs with the
Kato complexes C(X,Hq), hence the second page of the spectral sequence consists
of Kato cohomology Ep,q

2 = Hp(C(X,Hq)).

Proof. For any noetherian scheme, pure of dimension d, one may construct a coho-
mological spectral sequence of the form (e.g. , [CTHK97, Section 1])

Ep,q
1 (X,Z/2Z) :=

⊕

x∈Xp

Hp+q
x (X,Z/2Z) =⇒ Hp+q

ét (X,Z/2Z).

where Hp+q
x (X,Z/2Z) is defined to be the colimit, over all non-empty open sub-

subsets U ⊂ X containing x, of the groups Hp+q

{x}∩U
(U,Z/2Z). Since X, and hence

{x}, is excellent, there exists an open U0 ⊂ X such that {x} ∩ U is regular for

U ⊂ U0. In this situation, if x ∈ Xp, then {x} ∩ U is a codimension p embedding
in U , hence by absolute purity [Fuj02, Theorem 2.1]

Hp+q−2p({x} ∩ U,Z/2Z) ≃ Hp+q

{x}∩U
(U,Z/2Z)

so

Ep,q
1 (X,Z/2Z) ≃

⊕

x∈Xp

Hq−p
ét (κ (x) ,Z/2Z)

For any y ∈ Xp, x ∈ Xp+1, the yx-components of the differentials

Hq−p
ét (κ (y) ,Z/2Z)→ Hq−p−1

ét (κ (x) ,Z/2Z)

commute, up to signs, with those of the Kato complex [Jan, Theorem 1.1.1]. This
completes the proof. �

Corollary 1.13. Let X be a separated scheme that is smooth (i.e. formally smooth
and of finite type) over Z[ 12 ], pure of dimension d. The spectral sequence of the
proposition above takes the form

Ep,q
2 (X,Z/2Z) := Hp

Zar(X,Hq) =⇒ Hp+q
ét (X,Z/2Z),

where Hp
Zar(X,Hq) denotes the Zariski cohomology of the Zariski sheaf Hq associ-

ated to the presheaf U 7→ Hq
ét(U,Z/2Z). Hence, for all p, q ∈ Z the Kato cohomology

groups Hp(C(X,Hq)) and the Zariski cohomology groups Hp
Zar(X,Hq) agree.

Proof. To prove the corollary, it suffices to show that the sheaf of complexes as-
sociated to the presheaves U 7→ E∗,q1 (U,Z/2Z) is a flasque resolution of Hq. A
complex of sheaves is exact if and only if it is exact on stalks. So, it suffices to
demonstrate that, for every point x ∈ X, the complex E∗,q1 (OX,x,Z/2Z) is exact

in positive degrees and in degree zero E0,q
2 ≃ Hq

ét(OX,x,Z/2Z). This is known as
the Gersten conjecture. Since the morphism X → Spec(Z[ 12 ]) is smooth, the local
ring OX,x is formally smooth and essentially of finite type over O

Z[ 12 ],y
. The ring

O
Z[ 12 ],y

is either a DVR or a field. In both cases, the Gersten conjecture is known.

For the field case see, for example [BO74], and in the DVR case it was proved by
Gillet [Gil]. �

Lemma 1.14. Let X be a smooth variety (i.e. separated, formally smooth and of
finite type) over a finite field Fp (p > 2), pure of dimension d. For any codimension
p point x ∈ Xp of X, we have cd2(κ(x)) ≤ 1 + d− p, where cd2(κ(x)) denotes the
étale cohomological 2-dimension of the residue field κ(x) of x. Considering the E1

entries of the coniveau spectral sequence, if q > d+ 1, then Ep,q
1 = 0 for all p ∈ Z,

and hence the Kato complex C(X,Hq) vanishes.
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Proof. Let x ∈ Xp be a codimension p point of X. By [SGA73, Exposé X, Theorem
2.1] cd2(κ(x)) ≤ 1+ tr.deg

Fp
κ(x), where cd2(κ(x)) denotes the étale cohomological

2-dimension of the residue field κ(x) of x. As X is of finite type over a field, one
has [Gro65, Corollaire 5.2.3] that dimx(X) = dim(OX,x) + tr.deg

Fp
κ(x). It results

from [Gro64, Proposition 14.1.6] that d = dim(X) ≥ dimx(X) for all x ∈ X. Hence,
d−p ≥ tr.deg

Fp
κ(x), proving that cd2(κ(x)) ≤ 1+d−p. This proves the lemma. �

1.3. Finiteness results for Kato cohomology. The Kato conjecture was re-
cently solved. We write it down for later reference.

Proposition 1.15. [KS10, Theorem 8.1] Let X be a regular connected scheme
of Krull dimension d, proper over a finite field Fp (p > 2). The Kato cohomology
groups Hp(C(X,Hd+1)) vanish except when p = d, in which case Hd(C(X,Hd+1)) ≃
Z/2Z.

Next, recall the following fact about étale cohomology.

Lemma 1.16. Let X be a regular separated scheme of finite type over Z[ 12 ]. In
this situation, the étale cohomology groups Hm

ét (X,Z/2Z) are finite groups for all
m ≥ 0.

Proof. Let f denote the structural morphism X → Spec(Z[ 12 ]). From the finiteness
theorem [Del77, Théorèmes de Finitude, §1, Theorem 1.1] we have that, for all q ≥
0, the étale sheaves Rqf∗Z/2Z are constructible. Using the Leray spectral sequence

Ep,q
1 = Hp

ét(Z[
1
2 ], R

qf∗Z/2Z)⇒ Hp+q
ét (X,Z/2Z) [Del77, Cohomologie étale, §2, p.6],

we reduce to proving that the étale cohomology groups of Z[ 12 ] with coefficients in
a constructible sheaf are finite, which is known [Mil86, Chapter 2 §3 Theorem 3.1
and following discussion] �

Finally, we recall the following well known finiteness results for Kato cohomology,
which use the finiteness of étale cohomology together with the coniveau spectral
sequence.

Lemma 1.17 (Absolute Finiteness). Let X be a pure regular separated scheme of
finite type over a base scheme S. Consider the following situations:

(a) dim(X) ≤ 1, and S = Spec(Z[ 12 ]);
(b) dim(X) ≤ 2, X is quasi-projective over S, and S = Spec(Fp) (p > 2).
(c) dim(X) = d, and S = Spec(Fp) (p > 2).
(d) dim(X) = d, X is quasi-projective, and S = Spec(Fp) (p > 2).

In situations (a) and (b), all the Kato cohomology groups of X are finite. In
situation (c), the Kato cohomology group Hd(C(X,Hd+1)) is finite, and in situation
(d), the Kato cohomology group Hd(C(X,Hd)) is finite

Proof. In all situations, X satisfies the hypotheses of Lemma 1.16, hence the étale
cohomology of X is finite. Now consider the coniveau spectral sequence for étale
cohomology of Proposition 1.12. In situation (a), all differentials on the second page
of the spectral sequence are zero because dim(X) ≤ 1. So, the spectral sequence
collapses on the second page. Hence, as the abutment is finite (Lemma 1.16), the
Kato cohomology groups are finite.
For (b), using Lemma 1.14 we see that there is only one possibly non-zero dif-

ferential d2 : H
0(C(X,H3)) → H2(C(X,H2)) on the second page of the spectral

sequence. It follows that all the other Kato cohomology groups appear on the
stable page of the spectral sequence, hence are quotients of the induced filtration
on étale cohomology, so they are finite. The kernel and cokernel of d2 appear on
the stable page, hence are finite. Therefore H0(C(X,H3)) is finite if and only if

H2(C(X,H2)) is finite. The group H2(C(X,H2)), that is, E2,2
2 , is isomorphic to
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the mod 2 Chow group CHd(X)/2 of codimension d cycles [BO74, Theorem 7.7],
which is finite for X quasi-projective over a finite field [KS10, Corollary 9.4 (1)].
Now, assume we are in situation (c). From Lemma 1.14, it follows that the

differentials on the second page of the spectral sequence that are entering and
leaving the group Hd(C(X,Hd+1)) are zero. So, Hd(C(X,Hd+1)) appears on the
stable page, hence is finite since the abutment is finite.
Finally, assume we are in situation (d). As in the proof of case (b), the group

Ed,d
2 = Hd(C(X,Hd)) is isomorphic to CHd(X)/2 [BO74, Theorem 7.7], hence

is finite for X quasi-projective over a finite field [KS10, Corollary 9.4 (1)]. This
completes the proof of the lemma. �

1.4. Relation to motivic cohomology. First recall the definition of the motivic
cohomology of a smooth scheme over a Dedekind domain. Let X be a scheme
that is separated and smooth over a Dedekind domain D. The standard algebraic
m-simplex will be denoted by

△m
D := Spec(D[t0, t1, . . . , tm]/Σit

i − 1)

and the free abelian group on closed integral subschemes of codimension n in
X ×D△

m
D , which intersect all faces properly, will be denoted by zn(X,m). Placing

zn(X, 2n − m) in degree m, the associated complex of presheaves is denoted by
Z(n), and we set Z/2Z(n) := Z(n) ⊗L

Z/2Z. The complex Z/2Z(n) is in fact a
complex of sheaves for the étale topology [Gei04, Lem. 3.1], and when considered
as a complex of sheaves for the Zariski topology it will be denoted by Z/2Z(n)Zar.

Definition 1.18. The motivic cohomology groups of X with mod 2 coefficients
Hm

mot(X,Z/2Z(n)) are defined to be the hypercohomology groups of the complex
of Zariski sheaves Z/2Z(n)Zar.

Remark 1.19. In this remark we explain an observation of Totaro’s [Tot03, Theorem
1.3 and surrounding discussion], that the Beilinson-Lichtenbaum conjecture leads
to the long exact sequence 1.1 below. Let X be a separated scheme that is smooth
over D := Z[ 12 ]. Let π : (Sm/D)ét → (Sm/D)Zar denote the natural morphism of
sites.

(a) By the Beilinson-Lichtenbaum conjecture with Z/2Z-coefficients, we mean
that there is a quasi-isomorphism (Z/2Z(n))Zar ≃ τ≤nRπ∗Z/2Z of com-
plexes of Zariski sheaves on X. Recall that Rπ∗Z/2Z is the complex of
Zariski sheaves obtained by first taking an injective resolution I• of the
étale sheaf Z/2Z, from which we obtain an exact complex of étale sheaves.
Then, applying π∗ to this complex to obtain a complex of Zariski sheaves
(no longer exact). The cohomology of this complex in degree i is the right
derived functor Riπ∗Z/2Z, which is isomorphic to the Zariski sheafH

i asso-
ciated to the presheaf U 7→ Hi

ét(U,Z/2Z) [Tam94, I Proposition 3.7.1]. The
complex τ≤nRπ∗Z/2Z is a complex of Zariski sheaves with cohomology in
degree i equal to Riπ∗Z/2Z when i ≤ n and zero otherwise. It follows that
there is a distinguished triangle in the derived category of Zariski sheaves
on X

τ≤n−1Rπ∗Z/2Z→ τ≤nRπ∗Z/2Z→ Hn[−n]

then from the associated long exact sequence in hypercohomology, if the
Beilinson-Lichtenbaum conjecture with Z/2Z-coefficients holds, we obtain
the long exact sequence (c.f. [Tot03, Theorem 10.3])

· · · → Hm+n
mot (X,Z/2Z(n− 1))→ Hm+n

mot (X,Z/2Z(n))→ Hm
Zar(X,Hn)→(1.1)

Hm+n+1
mot (X,Z/2Z(n− 1))→ · · ·
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where Hm
Zar(X,Hn) denotes the Zariski cohomology of the Zariski sheaf Hn

associated to the presheaf U 7→ Hn
ét(U,Z/2Z).

(b) For smooth schemes over fields, the Beilinson-Lichtenbaum conjecture is
known, since it is equivalent to the Bloch-Kato conjecture [Kah05, Theorem
19], and the Bloch-Kato conjecture is known [Kah05, see Theorem 21 and
surrounding discussion for an overview].

Lemma 1.20. Let X be a pure separated scheme that is smooth over Z[ 12 ]. Recall
that Hq denotes the Zariski sheaf associated to the presheaf U 7→ Hq

ét(U,Z/2Z).
Consider the following statements:

(a) The Zariski cohomology groups Hp
Zar(X,Hq) are finite for all p, q ∈ Z;

(b) The motivic cohomology groups Hp
mot(X,Z/2Z(q)) are finite for all p, q ∈ Z;

(c) The Beilinson-Lichtenbaum conjecture with Z/2Z-coefficients is true (see
Remark 1.19).

We have the implication (a) implies (b). Furthermore if we assume (c), then (a)
is equivalent to (b). Hence, by Corollary 1.13, (b) is equivalent to finiteness of the
Kato cohomology groups Hp(C(X,Hq)) for all p, q ∈ Z.

Proof. To prove that (a) implies (b), recall that there is a coniveau spectral sequence
[Gei04, see §4 for integral coefficients version]

Ep,q
1 (X,Z/2Z(n)Zar) :=

⊕

x∈Xp

H2n−p+q
mot (κ (x) ,Z/2Z(n− p)) =⇒ Hp+q

mot (X,Z/2Z(n).

and the sheaf of complexes associated to the presheaf U 7→ E∗,q1 (U,Z/2Z(n)Zar)
gives a flasque resolution of the sheaf Hq [Gei04, Theorem 1.2 (2),(4) and (5), also
see remark at start of page 775], hence the Zariski cohomology groups Hp

Zar(X,Hq)
are the only groups on the E2 page of the above spectral sequence, which converges
to the motivic cohomology groups, and it follows that (a) implies (b).
Now assume (c), from which we obtain the long exact sequence 1.1 (see Remark

1.19), from which it follows that (b) implies (a). �

Next we recall some finiteness theorems relating the Kato cohomology to motivic
cohomology in the cases that finiteness of these groups is only partially known.

Lemma 1.21 (Relative Finiteness). Let X be a pure separated scheme that is
smooth over a base scheme S. Consider the following situations:

(a) dim(X) ≤ 2, no residue field of X is formally real, S = Spec(Z[ 12 ]);

(b) dim(X) ≤ 3, X is connected and proper over S, and S = Spec(Fp) (p > 2);

(c) dim(X) ≤ 4, X is connected and proper over S, and S = Spec(Fp) (p > 2);

In situation (a):

(i) The groups H0
Zar(X,H3), H0

Zar(X,H4), and H0
Zar(X,H5) are finite if and

only if the groups H2
Zar(X,H2), H2

Zar(X,H3), and H2
Zar(X,H4) are finite.

Furthermore, all the other groups Hp
Zar(X,Hq) are finite.

(ii) If all the groups H0
Zar(X,H3), H0

Zar(X,H4), and H0
Zar(X,H5) are finite,

then the motivic cohomology groups Hp
mot(X,Z/2Z(p)) are finite for all

p, q ∈ Z. Assuming the Beilinson-Lichtenbaum conjecture (see Remark
1.19 for an explanation of what we mean by this), the converse is true.

In situation (b):

(i) The group H0
Zar(X,H3) is finite if and only if the group H2

Zar(X,H2) is fi-
nite. Furthermore, all the other cohomology groups Hp

Zar(X,Hq) are finite.
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(ii) The motivic cohomology groups Hp
mot(X,Z/2Z(p)) are finite for all p, q ∈ Z

if and only if the group H0
Zar(X,H3) is finite.

In situation (c):

(i) The groups H2
Zar(X,H2), H2

Zar(X,H3), and H3
Zar(X,H3) are finite if and

only if all the groups H0
Zar(X,H3), H0

Zar(X,H4), and H1
Zar(X,H4) are

finite. Furthermore, all the other groups Hp
Zar(X,Hq) are finite.

(ii) The motivic cohomology groups Hp
mot(X,Z/2Z(p)) are finite for all p, q ∈ Z

if and only if all the groups H0
Zar(X,H3), H0

Zar(X,H4), and H1
Zar(X,H4)

are finite.

Proof. In all situations, for (ii), finiteness of motivic cohomology implies finiteness
of the Zariski cohomology groups by Lemma 1.20. Also, in each situation, to prove
(ii), it suffices to prove (i), for if the groups named in (i) are finite then all the
groups Hp

Zar(X,Hq) are finite, hence the motivic cohomology groups are finite by
Lemma 1.20. To prove (i), we work with the coniveau spectral sequence for étale
cohomology of Proposition 1.12.
First assume that we are in situation (a). The étale cohomological 2-dimension

of X is less than or equal to 2dim(X) + 1 [SGA73, Exposé 5, §6, Theorem 6.2],
from which it follows that whenever q > 2dim(X) + 1, we obtain vanishing of the
Zariski sheaf Hq, and hence vanishing of Hp

Zar(X,Hq). This, together with the fact
that dim(X) ≤ 2, gives that there are only three possibly non-zero differentials on
the second page of the spectral sequence, each having domain and codomain one
of the groups named in (i). This proves the second statement of (i). To prove
the first statement of (i), we prove finiteness of the kernel and cokernel of these
differentials. To prove this claim, observe that the kernel and cokernel of these
differentials appear on the third page of the spectral sequence, and the spectral
sequence collapses on the third page. As the abutment is finite (Lemma 1.16) this
proves the claim, finishing the proof of (i).
Assume that we are in situation (b). Then Lemma 1.14, Proposition 1.15, and

the fact that dim(X) ≤ 3, give that there is only one possible non-zero differential
on the second page of the spectral sequence. The domain of this differential is the
group H0

Zar(X,H3). By the same argument used in the previous situation, this
differential has finite kernel and cokernel, which concludes the proof in situation
(b).
Finally, assume that we are in situation (c). Again, Lemma 1.14, Proposition

1.15, and the fact that dim(X) ≤ 4, give that there are only three possibly non-zero
differentials on the second page of the spectral sequence, each having domain one
of the groups named in the lemma. As before, the kernel and cokernel of these
differentials are finite. Hence, this concludes the proof in the case of situation
(c). �

2. Arason’s theorem

In this section, for an excellent schemeX with 2 invertible, we recall the definition
of the complex of abelian groups C(X, I

n
). Arason essentially showed in [Ara75]

that if the Bloch-Kato conjecture is true, then C(X, I
n
) is isomorphic to the Kato

complex C(X,Hn). We call this result Arason’s Theorem (see Theorem 2.5).
We first recall the definitions of the maps en, sn, and hn, relating Galois coho-

mology, Witt groups, and Milnor K-theory.

2.1. Galois cohomology: Definition of h1. Let k be a field having char (k) 6= 2
and let G denote the absolute Galois group G := Gal (ks/k), where ks denotes a
separable closure of k. Let µ2 :=

{
a ∈ ks|a

2 = 1
}
denote the group of square roots
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of unity in ks. Let Gm denote the multiplicative group k∗s of units of ks. The exact
sequence of G-modules

1→ µ2 → Gm
2
→ Gm → 1,

where 2 denotes the endomorphism x 7→ x2, induces a long exact sequence in
cohomology, from which we obtain the exact sequence (as G acts by evaluation on
elements of Gm, H

0
Gal (k,Gm) = k∗)

(2.1) k∗
2
→ k∗ → H1 (k, µ2)→ H1

Gal (k,Gm) .

Since H1
Gal (k,Gm) = 0 [Ser94, Chapter 1 §1.2 Proposition 1], the exact sequence

(2.1) induces the isomorphism

(2.2) k∗/k∗2
∼=
→ H1

Gal (k, µ2) .

After identifying µ2 with Z/2Z, the isomorphism (2.2) is denoted by

(2.3) h1
k : k

∗/k∗2
≃
→ H1

Gal (k,Z/2Z) ,

and is said to be the norm-residue homomorphism in degree one.

2.2. Witt groups: Definition of s1. Let k be a field having char (k) 6= 2. The
fundamental ideal I(k) is defined to be the kernel of the mod 2 rank map W (k)→
Z/2Z. The q-th quotients Iq (k) /Iq+1 (k) of the powers of the fundamental ideal will

be denoted by I
q
(k). Taking the quotient by the kernel of the surjective dimension

homomorphism induces an isomorphism I
0
(k) =W (k) /I (k) ∼= Z/2Z.

Every unit a ∈ k∗ determines a non-degenerate symmetric bilinear form on k
given by b (k1, k2) := ak1k2, and this form is denoted by 〈a〉, and the orthogonal
sum of n such forms 〈ai〉, where ai ∈ k∗, is denoted by 〈a1, . . . , an〉. The diagonal
forms 〈1,−a〉, where a ∈ k∗, are denoted by 〈〈a〉〉, and are said to be Pfister forms.
The n-fold products of Pfister forms 〈〈ai〉〉 are denoted by 〈〈a1, . . . , an〉〉. It is a
classic theorem that, for any p ≥ 0, the p-th power Ip (k) of the fundamental ideal
is generated by p-fold Pfister forms 〈〈a1, . . . , ap〉〉.

Define s1 : k
∗/k∗2 → I

1
(k) by the assignment sending the class of a unit a ∈ k∗

to the class of the Pfister form 〈〈a〉〉 in I
1
(k). This is a well-defined isomor-

phism [EKM08, proof of Proposition 4.13], with inverse the signed determinant

b 7→ (−1)
dim(b)

2 det (b).

2.3. Milnor K-theory. Let k be a field. The n-th Milnor K-group KM
n (k) of k is

defined to the abelian group defined by the following generators and relations: The
generators are length n sequences {a1, . . . , an} of units ai ∈ k∗ (called symbols),
and the relations are multilinearity

{a1, . . . , aj−1, xy, aj+1, . . . , an} = {a1, . . . , aj−1, x, aj+1, . . . , an}

+ {a1, . . . , aj−1, y, aj+1, . . . , an} for all ai, x, y ∈ k∗ and 1 ≤ j ≤ n;

and the Steinberg relation {a1, . . . , x, . . . , 1− x, . . . , an} = 0 for all ai ∈ k∗, and
x ∈ k − {0, 1}.

2.4. The Maps sn and hn. Assume char (k) 6= 2. Consider the assignments

{a1, . . . , an} 7→ 〈a1, . . . , an〉 := s1 (a1)⊗ . . .⊗ s1 (an)

and
{a1, . . . , an} 7→ (a1, . . . , an) := h1 (a1) ∪ . . . ∪ h1 (an)

that send the class of the symbol {a1, . . . , an} to the class of the n-fold Pfister form
〈〈a1, . . . , an〉〉 and the class of the symbol {a1, . . . , an} to the Galois cohomology
class (a1, . . . , an), respectively. It is a classic fact that these maps respect the
Steinberg and multilinearity relations, and send 2 to 0 [Mil70]. It follows from the
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definition of the Milnor K-groups by generators and relations, that for all n ≥ 0,
the assignments above induce unique group homomorphisms

sn : KM
n (k) /2KM

n (k)→ I
n
(k)

and
hn : KM

n (k) /2KM
n (k)→ Hn

Gal (k,Z/2) .

We know that the homomorphism sn is an isomorphism [OVV07], and from the
work of Voevodsky [Voe03, Corollary 7.5], we know that hn is an isomorphism.

Definition 2.1. Define enk : I
n
(k)→ Hn

Gal (k,Z/2) to be the composition

I
n
(k)

s−1
n→ KM

n /2KM
n (k)

hn

→ Hn (k,Z/2Z) .

The homomorphism enk is an isomorphism, and from the definition of sn and hn,
the homomorphism enk sends the class of a Pfister form 〈〈a1, . . . , an〉〉 to the Galois
cohomology class (a1, . . . , an), hence agrees with en as defined by Arason in [Ara75,
p.456].

2.5. Cycle complexes with coefficients in I
n
. We start by recalling what we

mean by the residue and corestriction maps in the setting of Witt groups.

Definition 2.2. Let A be a DVR with fraction field K and residue field k, with
char(k) 6= 2. For every uniformizing element π ∈ A, there is an associated group
homomorphism

∂π :W (K)→W (k) ,

satisfying
∂π (I

n (K)) ⊂ In−1 (k) ,

and the induced homomorphism of abelian groups

∂π : I
n
(K)→ I

n−1
(k)

is independent of the choice of uniformizing element π [Ara75, Satz 3.1], hence is
said to be the residue homomorphism.

Definition 2.3. For any finite field extension L/K and any non-trivial K-linear
morphism s : L → K (see first sentence of the proof of Satz 3.3 for the fact that
such a non-trivial K-linear morphism exists), the induced homomorphism on Witt
groups s∗ :W (L)→W (K) induces a homomorphism of groups

corL/K : I
n
(L)→ I

n
(K) ,

which is independent of s [Ara75, Satz 3.3], hence is defined to be the corestriction
for the finite field extension L/K.

We proceed, as we did with the Kato complexes, by simply defining the yx-
component of the differential.

Definition 2.4. Let X be an excellent scheme, finite dimensional of dimension d,
with 2 invertible on X. Recall the notation of Definition 1.6. We define a sequence
(one way to see that it is a complex is to use Arason’s theorem below) of abelian
groups

C∗(X, I, n) :=
⊕

x∈X0

I
n
(κ (x))

d
→

⊕

x∈X1

I
n−1

(κ (x))
d
→ · · · · · ·

d
→

⊕

x∈Xd

I
n−d

(κ (x))

by defining the differentials componentwise. Set I
m
(κ (x)) = 0 for m < 0. For

y ∈ Xp, x ∈ Xp+1, define the yx-component

dyx : I
i
(κ (y)) // I

i−1
(κ (x))
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as follows: If x /∈ {y}, then define dyx = 0. If x ∈ {y}, then define

dyx :=
∑

xi|x

corκ(xi)/κ(x) ◦ ∂
xi ,

where ∂xi denotes the residue map of Definition 2.2, and corκ(xi)/κ(x) the core-
striction of Definition 2.3. These complexes are called the cycle complexes with
coefficients in I

n
.

Now we are able to state and prove Arason’s Theorem.

Theorem 2.5 (Arason’s Theorem). Let X be a noetherian excellent scheme with
2 invertible in the global sections of X. If the Bloch-Kato conjecture is true, then

the maps enκ(x) define, for all n ≥ 0, an isomorphism of complexes en : C(X, I
n
)
≃
→

C(X,Hn), from the cycle complex with coefficients in I
n
to the Kato complex.

Proof. Fix n ≥ 0. The map en : C(X, I
n
) → C(X,Hn) is defined in the obvious

way. On the degree i terms, it is

⊕

x∈Xi

I
n−i

(κ (x))
⊕en−i

κ(x)
→

⊕

x∈Xi

Hn−i
Gal (κ (x) ,Z/2Z)

where ⊕en−i
κ(x) sums over the set X

i. To prove the theorem, we must prove that en

defines a map of complexes.
Since the differentials are defined componentwise, it suffices to prove that the

diagram below commutes

(2.4) I
i
(κ (y))

dyx
//

eiκ(y)

��

I
i−1

(κ (x))

ei−1
κ(x)

��

Hi
Gal (κ (y) ,Z/2Z)

dyx
// Hi−1

Gal (κ (x) ,Z/2Z)

for every pair of integers i, p, and every y ∈ Xp, x ∈ Xp+1. If x /∈ {y}, then both

dyx components are zero by definition, so the diagram commutes. If x ∈ {y}, then,
by definition,

dyx :=
∑

xi|x

corκ(xi)/κ(x) ◦ ∂
xi

so

ei−1
κ(x) ◦ dyx =

∑

xi|x

ei−1
κ(x) ◦ corκ(xi)/κ(x) ◦ ∂

xi

because eiκ(x) is a group homomorphism. Now we explain why, to prove that di-

agram 2.4 commutes, it suffices to show that both squares of the diagram below
commute

(2.5) I
i
(κ (y))

∂xi
//

eiκ(y)

��

I
i−1

(κ (xi))
corκ(xi)/κ(x)

//

ei−1

κ(xi)
��

I
i−1

(κ (x))

ei−1
κ(x)

��

Hi
Gal (κ (y) ,Z/2Z)

∂xi
// Hi−1

Gal (κ (xi) ,Z/2Z)
corκ(xi)/κ(x)

// Hi−1
Gal (κ (x) ,Z/2Z)

for every xi lying over x. Assume they do, that is,

ei−1
κ(x) ◦ corκ(xi)/κ(x) ◦ ∂

xi = corκ(xi)/κ(x) ◦ ∂
xi ◦ eiκ(y).
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for every xi lying over x. Hence,

dyx ◦ e
i
κ(y) =

∑

xi|x

corκ(xi)/κ(x) ◦ ∂
xi ◦ eiκ(y)

=
∑

xi|x

ei−1
κ(x) ◦ corκ(xi)/κ(x) ◦ ∂

xi

= ei−1
κ(x) ◦ dyx.

To finish the proof, recall the following results of Arason. For A a DVR with
fraction field K and residue field k with char(k) 6= 2, the diagram

I
n
(K)

∂
//

enK

��

I
n−1

(k)

en−1
k

��

Hn (K,Z/2Z)
∂

// Hn−1 (k,Z/2Z)

is commutative [Ara75, Satz 4.11]. Additionally, when L/K is a finite field extension
with char(K) 6= 2, the diagram

I
n
(L)

corL/K
//

enL

��

I
n
(K)

enK

��

Hn (L,Z/2Z)
corL/K

// Hn (K,Z/2Z)

is commutative [Ara75, Satz 4.18]. It follows that both squares of Diagram 2.5
commute, which concludes the proof. �

3. Finiteness theorems for the shifted Witt groups

In this section, Arason’s theorem is applied to Gille’s graded Gersten-Witt spec-
tral sequence. For more general schemes than for smooth varieties over fields, this
allows the Witt groups to be related to the Zariski cohomology groupsHp

Zar(X,Hq),
and hence, to the motivic cohomology groups.

3.1. Coniveau spectral sequence for coherent Witt groups.

Definition 3.1. For a noetherian scheme X with 2 invertible in its global sections,
let Db

c(X) denote the derived category of bounded complexes of Zariski sheaves
on X having coherent cohomology. A dualizing complex for X is defined to be
a bounded complex K of injective coherent sheaves with the property that the
natural morphism of complexes ωK (essentially the evaluation map, see [Gil07,
§1.6] for a precise description) from an object M of Db

c(X) to its double dual
RHom(RHom(M,K),K) is an isomorphism (in Db

c(X)). The coherent Witt groups
of X are defined to be the Witt groups of the triangulated category with duality

(Db
c(X), RHom(−,K), ωK), and are denoted by W̃n(X,K).

Remark 3.2. Let X be a noetherian scheme with 2 invertible in its global sections.

(a) When X is regular and separated, any injective resolution I• of OX yields

a dualizing complex, and the quasi-isomorphism OX
≃
→ I• induces an iso-

morphism Wn(X)
≃
→ W̃n(X, I•) [Gil07, Example 2.4].

(b) Every dualizing complex I• for X yields a function µI : X → Z [Gil07,
Lemma 1.12 and following discussion], which can be used to obtain a filtra-
tion on the derived category. When X is regular and the dualizing complex
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is given by an injective resolution of the structure sheaf, this function is ex-
actly the usual codimension function x 7→ codim(x) [Gil07, Example 1.13].
Hence, the filtration obtained is exactly the usual filtration by codimension
of supports.

Let X be a noetherian regular separated Z[ 12 ]-scheme of dimension d, and let
I• denote the dualizing complex obtained by taking an injective resolution of the
structure sheaf OX . We briefly recall Gille’s construction of the coniveau spectral
sequence for coherent Witt groups [Gil07, §5.8]. Filtering by codimension of support
defines a filtration F pDb

c(X) on the bounded derived category Db
c(X). From this

filtration, we obtain short exact sequences of triangulated categories with duality,

F p+1Db
c(X)→ F pDb

c(X)→ F pDb
c(X)/F p+1Db

c(X)

from which we obtain the long exact sequence of Witt groups below.

→W p+q(F p+1Db
c(X))→W p+q(F p+1Db

c(X))→W p+q(F pDb
c(X)/F p+1Db

c(X))→

From these exact sequences, an exact couple can be written down, which determines
the spectral sequence below

(3.1) Ep,q
1 :=W p+q(F pDb

c(X)/F p+1Db
c(X))⇒W p+q(X),

converging to the Witt groups of X (we have identified the coherent Witt groups
with the usual Witt groups using Remark 3.2). The complexes E∗,q1 appearing on
the E1-page, vanish for q 6= 0 mod4, and otherwise have the form [Gil07, §5.8]

(3.2) C(X,W, ι) :=
⊕

x∈X0

W (κ (x))
d
→

⊕

x∈X1

W (κ (x))
d
→ · · · · · ·

d
→

⊕

x∈Xd

W (κ (x))

where ι denotes the isomorphisms chosen to identify the complex E∗,q1 with C(X,W, ι).
The differentials may differ for different choices of isomorphisms ι.
One well known general fact about the shifted Witt groups of arithmetic schemes

is the following easy corollary to the coniveau spectral sequence.

Corollary 3.3. Let X be a noetherian regular Z[ 12 ]-scheme of dimension d. If no
residue field of X is formally real, then the Witt groups Wn(X) are torsion groups.

Proof. As no residue field of X is formally real, for each x ∈ X, the Witt group of
the residue field W (κ(x)) is a torsion group [Sch85, Theorem 6.4 (ii)]. As arbitrary
direct sums of torsion abelian groups are torsion, from the description in Equation
3.2 of the first page of the coniveau spectral sequence 3.1, we have that all the groups
appearing on the first page are torsion groups. Since X is finite dimensional, the
first page of the spectral sequence is bounded, hence convergent, so we have that
the Witt groups are torsion. �

The following proposition was proved by Stefan Gille [Gil07, §10], although (b)
doesn’t explicitly appear in [Gil07], so it requires proof.

Proposition 3.4 (Gille’s Graded Gersten-Witt Spectral Sequence). Let X be a
noetherian regular separated excellent Z[ 12 ]-scheme.

(a) There is a spectral sequence (not necessarily convergent)

Ep,q
1 := Hp+q(C(X, Ip, ι)/C(X, Ip+1, ι))⇒ Hp+q(C(X,W, ι))

where the abutment Hp+q(C(X,W, ι)) is the cohomology of the Gersten-
Witt complex, and the differential dr has bidegree (r, 1− r).

(b) The complexes C(X, Ip, ι)/C(X, Ip+1, ι) are isomorphic to the cycle com-

plexes C(X, I
p
), hence Ep,q

1 = Hp+q(C(X, I
p
)).
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Proof. First we recall briefly the construction of the spectral sequence . The differ-
entials of the complex C(X,W, ι) respect the filtration by powers of the fundamental
ideal [Gil07, Theorem 6.6], hence we obtain a filtered complex
(3.3)

C(X, In, ι) :=
⊕

x∈X0

In (κ (x))
d
→

⊕

x∈X1

In−1 (κ (x))
d
→ · · · · · ·

d
→

⊕

x∈Xn

I0 (κ (x)) ,

where we set Im (κ (x)) =W (κ (x)) when m ≤ 0. The exact sequence of complexes

0→ C(X, In+1, ι)→ C(X, In, ι)→ C(X, In, ι)/C(X, In+1, ι)→ 0

determines a long exact sequence in cohomology

→ Hp+q(C(X, In+1, ι))→ Hp+q(C(X, In, ι))→ Hp+q(C(X, Ip, ι)/C(X, Ip+1, ι))→

and setting Ep,q
1 := Hp+q(C(X, Ip, ι)/C(X, Ip+1, ι)), we obtain an exact couple

which gives the spectral sequence of the Proposition.
It remains to prove (b), that the quotient complexes obtained from C(X,W, ι)

agree with the cycle complexes (note that the quotient complexes do not depend on
the choices of isomorphisms ι [Gil07, Definition 7.4 and Lemma 7.5]). For a smooth
variety over a field, the cycle complexes are exactly Rost’s cycle complexes for the

cycle module I
∗
, so the assertion of (b) is exactly [Gil07, §10.7]. Nevertheless, in

the general case the proof is identical. First, recall that for integral excellent rings
the integral closure is finite in the fraction field (see Example 1.4). The components

dyx :W (κ (y)) // W (κ (x))

of the differentials of the complex C(X,W, ι) may be described as follows: If x /∈

{y}, then dyx = 0. If x ∈ {y}, then

dyx :=
∑

xi|x

corκ(xi)/κ(x) ◦ ∂
xi ,

where ∂xi denotes the residue map of Definition 2.2 and corκ(xi)/κ(x) the core-
striction of Definition 2.3 [Gil07, conjugate Lemma 7.2, Proposition 6.10 (tak-
ing L = K and B to be the integral closure of A), and Proposition 6.5]. From
this description of the differential, it follows that the n-th quotient complexes
C(X, In, ι)/C(X, In+1, ι) of the filtered complex C(X,W, ι) agree with the cycle

complex C(X, I
n
) of Definition 2.4. �

Applying Arason’s Theorem (Theorem 2.5), we obtain the following corollary.

Corollary 3.5. Maintain the hypotheses of Proposition 3.4. The spectral sequence
of Proposition 3.4 (not necessarily convergent) takes the form

Ep,q
1 := Hp+q(C(X,Hp))⇒ Hp+q(C(X,W, ι)),

where Hp+q(C(X,Hp)) is the Kato cohomology of the p-th Kato complex.

Corollary 3.6. Let X be a pure separated scheme that is smooth over Z[ 12 ], and
suppose that no residue field of X is formally real. In this situation, the spectral
sequence of Proposition 3.4 is convergent and takes the form

Ep,q
1 := Hp+q

Zar (X,Hp)⇒ Hp+q(C(X,W, ι)),

where Hp denotes the Zariski sheaf associated to the presheaf U 7→ Hp
ét(U,Z/2Z).

Proof. Applying Corollary 1.13, we have that Hp+q(C(X,Hp)) = Hp+q
Zar (X,Hp).

Together with the previous corollary 3.5, this yields the description of the E1-
terms. To prove convergence, note that as no residue field of X is formally real, the
cohomological dimension of X is 2dim(X) + 1 [SGA73, Exposé 5 §6 Theorem 6.2].

Hence, the groups Hp+q
Zar (X,Hp) vanish for p > 2dim(X) + 1, from which it follows
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that the first page of the spectral sequence is bounded, and therefore the spectral
sequence strongly converges. �

Proposition 3.7. Let X be a pure separated scheme that is smooth over a scheme
S. Consider the following situations:

(a) dim(X) ≤ 1, no residue field of X is formally real, and S = Spec(Z[ 12 ]);

(b) dim(X) ≤ 2, X is quasi-projective, and S = Spec(Fp) (p > 2);

In either situation, the Witt groups Wn(X) of X are finite.

Proof. In cases (a) and (b), the Kato cohomology is finite by Lemma 1.17 (a) and
(b), respectively. Hence, applying the convergent spectral sequence of Corollary 3.6,
we obtain finiteness of the Gersten-Witt complex C(X,W, ι). To finish the proof,
use the convergent coniveau spectral sequence (Equation 3.1). �

Next we note the following consequence of Mayer-Vietoris.

Lemma 3.8. Let S denote the category of noetherian regular separated Z[ 12 ]-schemes.

(a) If, for any X ∈ S, Wn(X) is finite for all n ∈ Z, then, for any X ∈ S and
any line bundle L on X, Wn(X,L) is finite for all n ∈ Z.

(b) If, for every connected X ∈ S, Wn(X) is finite for all n ∈ Z, then, for
every X ∈ S, Wn(X) is finite for all n ∈ Z.

(c) If, for every affine X ∈ S, Wn(X) is finite for all n ∈ Z, then, for every
X ∈ S, Wn(X) is finite for all n ∈ Z.

Furthermore, the same statements are true with the Grothendieck-Witt groups GWn(X)
in place of Witt groups.

Proof. For noetherian regular separated schemes with 2 invertible, Mayer-Vietoris
holds for the Witt groups [Bal01b, Theorem 2.5], and for the Grothendieck-Witt
groups [Sch10b, Theorem 1.1]. For (a), recall that as line bundles are locally free,
an open cover of X on which L is trivial may be chosen. The lemma then follows
by using Mayer-Vietoris and inducting on the number of open sets in the cover.
Next recall that the connected components of any locally noetherian X are open

in X, and their intersection is empty. To prove (b), use Mayer-Vietoris, and proceed
by induction on the number of connected components of X.
Recall that for any separated scheme, the intersection of any two affine sub-

schemes is affine. To prove (c), use Mayer-Vietoris, and induct on the number of
affine open sets necessary to cover X. �

The following well known Lemma will be used together with the previous one to
reduce to X integral.

Lemma 3.9. If X is a noetherian regular connected scheme, then X is integral.

Proof. Let X be a noetherian regular connected scheme. As X is noetherian, it has
only a finite number of irreducible components and every local ring OX,x of X is
also noetherian [Liu02, Chapter 2 Proposition 3.46(a)]. Since X has only a finite
number of irreducible components, it is integral if and only if it is connected and
integral at every point (i.e.OX,x is an integral domain for every x ∈ X) [Liu02,
Chapter 2 Exercise 4.4]. To finish the proof, recall that every regular noetherian
local ring is a domain [Liu02, Chapter 4 Proposition 2.11]. �

Theorem 3.10 (Absolute Finiteness). Let X be a smooth variety over Fp (p > 2),
with dim(X) ≤ 2, and let L be a line bundle on X. In this situation, the Witt
groups Wn(X,L) are finite for all n ∈ Z.
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Proof. We may assume that X is connected using Lemma 3.8 (b), hence, inte-
gral, using Lemma 3.9. Using 3.8 (c), we may assume X is affine, hence X →
Spec(Fp) is quasi-projective (any finite-type morphism between affine schemes is
quasi-projective). Proposition 3.7 (b), and Lemma 3.8 (a) finish the proof. �

Theorem 3.11. Let X be a separated scheme that is smooth over Z[ 12 ], with no
residue field of X formally real. Assume the Beilinson-Lichtenbaum conjecture (see
Remark 1.19. Note that it is known for smooth varieties over fields). If the motivic
cohomology groups Hm

mot(X,Z/2Z(n)) are finite for all m,n ∈ Z, then the Witt
groups Wn(X) are finite for all n ∈ Z.

Proof. We may assume that X is connected using Lemma 3.8 (b), hence, integral
using Lemma 3.9. Using that the Beilinson-Lichtenbaum conjecture holds and that
the motivic cohomology groups Hm

mot(X,Z/2Z(n)) are all finite, we apply Lemma
1.20 to obtain that the Zariski cohomology groups Hm

Zar(X,Hn) are all finite. Since
the spectral sequence of Corollary 3.6 is convergent, the cohomology groups of the
Gersten-Witt complex C(X,W, ι) are finite. To finish the proof, use the coniveau
spectral sequence converging to the Witt groups of X (Equation 3.1). �

For ease of reference we include the following corollary.

Corollary 3.12. Let X be a smooth variety over a finite field Fp (p > 2), and
let L be a line bundle on X. If the mod 2 motivic cohomology groups of X,
Hm

mot(X,Z/2Z(n)), are finite for all m,n ∈ Z, then the Witt groups Wn(X,L)
are finite for all n ∈ Z.

Finally, we note some partial converses to Theorem 3.11.

Theorem 3.13 (Relative Finiteness). Let X be a pure separated scheme that is
smooth over a base scheme S. Consider the following situations (for (a), assume
Beilinson-Lichtenbaum):

(a) dim(X) ≤ 2, no residue field of X is formally real, and S = Spec(Z[ 12 ]);
(b) dim(X) ≤ 3, X is connected and proper over S, and S = Spec(Fp) (p > 2);
(c) dim(X) ≤ 4, X is connected and proper over S, and S = Spec(Fp) (p > 2).

In situations (a) and (b):

(i) The Witt groups W 1(X) and W 3(X) are finite;
(ii) Finiteness of W 0(X) is equivalent to finiteness of W 2(X);
(iii) W 0(X) is finite if and only if the motivic cohomology groups Hp

mot(X,Z/2Z(q))
are finite for all p, q ∈ Z.

In situation (c):

(i) The groups W 0(X) and CH3(X)/2CH3(X) are both finite if and only if
the motivic cohomology groups Hp

mot(X,Z/2Z(q)) are finite for all p, q ∈ Z.

Proof. In all situations, finiteness of the Witt groups follows from finiteness of
motivic cohomology by Theorem 3.11, so we will only prove the other direction.
Assume that we are in situation (a). First we prove (i). To prove that W 1(X)

is finite, we will prove that the group H1(C(X,W, ι)) is finite, and then use the
coniveau spectral sequence (Equation 3.1). To prove that H1(C(X,W, ι)) is finite,
considering the spectral sequence of Corollary 3.6, it suffices to prove that the
groups on the on the p+ q = 1 diagonal of the first page of the spectral sequence,
H1

Zar(X,Hp) for p ≥ 0, are finite. This was shown in Lemma 1.21 (a) (i). The
proof of finiteness of W 3(X) is identical.
Now we prove (ii). Assume that W 0(X) is finite. Considering the shape of the

coniveau spectral sequence (Equation 3.1), this implies H0(C(X,W, ι)) is finite.
Considering the spectral sequence of Corollary 3.6, if we prove that all the groups
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H2
Zar(X,Hp) are finite, this will prove that H2(C(X,W, ι)) is finite, hence prove

that W 2(X) is finite. To accomplish this, using Lemma 1.21 (a) (i), it suffices
to prove that the groups H0

Zar(X,H3), H0
Zar(X,H4), and H0

Zar(X,H5) are finite.
Note that once we prove this, it will also finish the proof of (iii). Consider the
spectral sequence of corollary 3.6. Since H0

Zar(X,H5) has no non-zero differentials
entering or leaving it, it is stable, hence finite by finiteness of W 0(X). There is one
possibly non-zero differential leaving the group H0

Zar(X,H4). It is the differential

d4,−4
1 : E4,−4

1 = H0
Zar(X,H4) → E5,−4

1 = H1
Zar(X,H5). Since the kernel of d0,41 is

stable, and is on the 0-th diagonal, it is finite by finiteness ofW 0(X). So finiteness of
H0

Zar(X,H4) follows from finiteness ofH1
Zar(X,H5) (Lemma 1.21 (a) (i)). Next, we

will prove that H0
Zar(X,H3) is finite. First, consider the differential d3,−3

1 : E3,−3
1 =

H0
Zar(X,H3) → E4,−3

1 = H1
Zar(X,H4). Since H1

Zar(X,H4) is finite, H0
Zar(X,H3)

is finite if and only if the kernel of d3,−3
1 is finite. The kernel of d3,−3

1 equals E3,−3
2 .

Consider the differential d3,−3
2 : E3,−3

2 → E5,−4
2 . Since H1

Zar(X,H5) is finite, its

quotient E5,−4
2 is also finite. As the kernel of d3,−3

2 is on the 0-th diagonal of the

stable page, and W 0(X) is finite, we obtain finiteness of E3,−3
2 . Thus, proving that

W 2(X) is finite. The proof that finiteness of W 2(X) implies finiteness of W 0(X)
is identical.
Assume that we are in situation (b). First we prove prove (i), finiteness of

W 1(X). As in situation (a), it suffices to prove that the groups H1
Zar(X,Hp) are

finite, for p ≥ 0. This was shown in Lemma 1.21 (b) (i). Similarly, we have that
W 3(X) is finite. Next, to prove (ii), assume W 0(X) is finite. Consider the spectral

sequence of Corollary 3.6. As E3,−3
1 = H0

Zar(X,H3) is on the 0-th diagonal of the
stable page, it is finite. So using Lemma 1.21 (b) (i) and (ii), this proves (iii),
and we have that all the groups H2

Zar(X,Hp), for p ≥ 0, are finite, which proves
finiteness of W 2(X). The other direction is identical.
Finally, assume we are in situation (c). Consider the spectral sequence of Corol-

lary 3.6. By hypothesis W 0(X) is finite, so the stable term E4,−4
1 = H0

Zar(X,H4)
is finite. Additionally, by hypothesis CH3(X)/2CH3(X) = H3

Zar(X,H3) is finite,
hence H1

Zar(X,H4) is finite (Lemma 1.21 (c) (i)). Now consider the differential

d3,−3
1 : H0

Zar(X,H3)→ H1
Zar(X,H4). As the kernel of d3,−3

1 is on the 0-th diagonal
of the stable page, it is finite by finiteness of W 1(X). Therefore, H0

Zar(X,H3) is
finite, which is enough to finish the proof using Lemma 1.21 (c) (i). �

4. Finite generation theorems for the higher Grothendieck-Witt

groups

In this section, we prove finite generation theorems for the Grothendieck-Witt
groups of arithmetic schemes. Let X be a noetherian separated scheme over Z[ 12 ],

and let L be a line bundle on X. Let ChbVect(X) denote the category of bounded
chain complexes of vector bundles on X. By shifting L, for each n ∈ Z, we obtain a
duality Hom(−, L[n]) on ChbVect(X). We work with Schlichting’s Grothendieck-

Witt spectrum GWn(X,L) [Scha] associated to the category ChbVect(X), equipped
with the duality Hom(−, L[n]) and with quasi-isomorphisms as weak equivalences.
Its m-th homotopy groups are denoted by GWn

m(X,L), and are said to be the
Grothendieck-Witt groups of X with coefficients in L. These groups are 4-periodic
in n, GWn

m(X,L) ≃ GWn+4
m (X,L). The negative Grothendieck-Witt groups, that

is, the negative homotopy groups of the Grothendieck-Witt spectrum, agree with
the Witt groups GW 0

−m(X) ≃Wm(X), for m > 0. For these facts, see [Scha].
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Proposition 4.1. Let X be a noetherian regular separated Z[ 12 ]-scheme. For every
n ∈ Z, there is a long exact sequence of abelian groups

· · · → GWn
m(X)→ GWn−1

m−1(X)
F
→ Km−1(X)

H
→ GWn

m−1(X)→ · · ·

which may be completed to end in

· · ·GWn−1
0 (X)→ K0(X)

H
→ GWn

0 (X)→Wn(X)→ 0

Proof. It is proved in [Scha] that the sequence of spectra

GWn−1(X)
F
→ K(X)

H
→ GWn(X)

is a homotopy fibration, where K(X) is the algebraic K-theory spectrum whose
homotopy groups are the higher algebraic K-groups. Hence, it determines the
long exact sequence of the proposition, with one exception. To complete the long
exact sequence to the form stated in the proposition, we use the isomorphism
GW 0

−m(X) ≃ Wm(X) (m > 0) [Scha], which gives GW 0
−1(X) ≃ W 1(X). Shifting

the duality on both sides (n − 1)-times, we obtain GWn−1
−1 (X) ≃ Wn(X). Since

there are no negative K-groups of X, the map GWn
0 (X)→Wn(X) is surjective as

asserted. �

Karoubi induction is a well known means of proving the corollary below. We give
the corollary the name “Schlichting” induction because the argument is different
than the usual Karoubi induction argument (i.e. it uses the fibration above), and it
was suggested to the author by Schlichting.

Corollary 4.2 (“Schlichting” Induction). Maintain the hypothesis of the previous
Proposition. Assume that the groups Km(X) are finitely generated for all m ∈ Z. If
the Witt groups Wn(X) are finitely generated for all n ∈ Z, then the Grothendieck-
Witt groups GWn

m(X) are finitely generated for all m,n ∈ Z.

Proof. We will prove the result by induction on m. The base case is m = −1,
finite generation of the Witt groups Wn(X) ≃ GWn−1

−1 , for all n ∈ Z. For the

induction step, suppose that GWn−1
m−1(X) is finitely generated, for all n ∈ Z. Using

the fibration sequence of Proposition 4.1, and finite generation of the algebraic K-
theory groups Km(X), we obtain that GWn

m(X) is also finitely generated, for all
n ∈ Z. �

Theorem 4.3. Let X be a separated scheme that is smooth over Z[ 12 ], with no
residue field of X formally real (e.g. , a smooth variety over a finite field Fp (p > 2)),
and let L be a line bundle on X. If dim(X) ≤ 1, then the Grothendieck-Witt groups
GWn

m(X,L) are finitely generated groups.

Proof. We may assume that X is connected using Lemma 3.8 (b), hence, inte-
gral using using Lemma 3.9. Under the hypotheses on X, the algebraic K-groups
Km(X) are finitely generated for all m ∈ Z [Kah05, §4.7.1 Proposition 38 (b)]. So,
the result follows from Corollary 4.2 and Theorem 3.7 (a) (use Lemma 3.8 to get
the result for any line bundle L on X). �

We have the following conditional result.

Theorem 4.4. Let X be a separated scheme that is smooth over Z[ 12 ], with no
residue field of X formally real (e.g. , a smooth variety over a finite field Fp (p > 2)),
and let L be a line bundle on X. Assume the Beilinson-Lichtenbaum conjecture
holds (see Remark 1.19, note this is known for smooth varieties over fields). If the
motivic cohomology groups Hm

mot(X,Z(n)) are finitely generated for all m,n ∈ Z,
then the Grothendieck-Witt groups GWn

m(X,L) are finitely generated for all m,n ∈
Z.
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Proof. We may assume that X is connected using Lemma 3.8 (b), hence, integral
using Lemma 3.9. After applying the Atiyah-Hirzebruch spectral sequence converg-
ing to K-theory [Kah05, 4.3.2 Equation (4.6) and the final paragraph of §(4.6)], we
obtain that K-theory Km(X) is finitely generated for all m ∈ Z. Multiplication by
2 defines a short exact sequence of motivic sheaves

0→ Z(n)
2
→ Z(n)→ Z/2Z(n)→ 0,

for every n ∈ Z. This induces a long exact sequence

· · · → Hm
mot(X,Z(n))→ Hm

mot(X,Z(n))→ Hm
mot(X,Z/2Z(n))→ · · ·

of motivic cohomology groups. Using the hypothesis that the motivic cohomology
groupsHm

mot(X,Z(n)) are finitely generated, it follows that the groupsHm
mot(X,Z/2Z(n))

are also finitely generated, hence finite, as they are torsion. By Theorem 3.11(a),
the Witt groups Wn(X) are finite. Therefore, Corollary 4.2 finishes the proof (use
Lemma 3.8 to get the result for any line bundle on X). �

5. Finiteness of the d-th Chow-Witt group

Throughout this section, X will denote a variety (i.e. separated and of finite
type) that is smooth over a field k (char(k) 6= 2). First, we recall the definition
of the Chow-Witt groups (a.k.a. Chow groups of oriented cycles). The n-th cycle
complex with coefficients in Milnor K-theory [Kat86b] is a complex consisting of
Milnor K-groups

C(X,KM
n ) :=

⊕

x∈X0

KM
n (κ (x))

d
→

⊕

x∈X1

KM
n−1 (κ (x))

d
→ · · · · · ·

d
→

⊕

x∈Xd

KM
n−d (κ (x))

with differential defined componentwise, exactly as was done in Definition 1.7,
however using the the residue morphism for Milnor K-theory. The natural map
sn : KM

n (k) → I
n
(k) (see Section 2.4), defined for every field k with char(k) 6= 2,

induces a map of complexes sn : C(X,KM
n )→ C(X, I

n
) (e.g. , see Theorem 10.2.6

in Fasel’s Thesis, or [Fas08]), where C(X, I
n
) is the complex of Definition 2.4. To

obtain the complex

C(X, In, ωX/k) :=
⊕

x∈X0

In
(
κ (x) ; Λ0

)
→ · · · →

⊕

x∈Xd

In−d
(
κ (x) ; Λd

)
,

that is also needed to define the Chow-Witt groups, where Λi := Λi((mx/m
2
x)
∗),

one begins with Schmid’s Gersten-Witt complex [Schb, Satz 3.3.2]

C(X,W,ωX/k) :=
⊕

x∈X0

W
(
κ (x) ; Λ0

)
→ · · · →

⊕

x∈Xd

W
(
κ (x) ; Λd

)
,

and filters it by the powers of the fundamental ideal, for example, see [BM00].
Recall that for any field k, and any one-dimensional k-vector space L, a choice
of generator for L defines an isomorphism W (k) → W (k, L), and by definition
In (k;L) := In (k) ·W (k;L), as In(k;L) does not depend on the choice of isomor-
phism (e.g. , see Lemma A.1.2 in Fasel’s Thesis, or [Fas08]). The quotient complexes

C(X, In, ωX/k)/C(X, In+1, ωX/k) will be denoted simply by C(X, I
n
), as they are

in fact isomorphic (e.g. , see Lemma A.1.3 in Fasel’s Thesis, or [Fas08]).

Definition 5.1. Define the complex C(X, Jn) to be the fiber product of the com-

plexes C(X, In, ωX/k) and C(X,KM
n ) over C(X, I

n
). Hence, C(X, Jn) lives in a
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diagram

C(X, Jn) //

��

C(X, In, ωX/k)

��

C(X,KM
n )

sn
// C(X, I

n
)

where the map from C(X, In, ωX/k) to C(X, I
n
) is the quotient map. For any

n ≥ 0, the n-th Chow-Witt group C̃H
n
(X) is defined to be the n-th cohomology

group of the complex C(X, Jn).

The following lemma is a slight variation on an argument of Gille.

Lemma 5.2. [Gil07, Proof of Proposition 10.3] Suppose that the base field k is
a finite field Fp (p > 2), and dim(X) = d. Then, for all j ≥ 0, the complex

C(X, Ij+d+2, ωX/k) vanishes, and the quotient map C(X, Id+1, ωX/k)
≃
→ C(X, I

d+1
)

is an isomorphism of complexes.

Proof. Let x ∈ Xp be a codimension p point of X. By Lemma 1.14, the cohomologi-
cal 2-dimension cd2(κ(x)) of the residue field κ(x) of x satisfies cd2(κ(x)) ≤ 1+d−p.

Since the map eik : I
i
(k)→ Hi

Gal(k,Z/2Z) is an isomorphism (see Definition 2.1) for

every field k, I
2+d−p

(κ(x)) = 0. It follows that I2+d−p(κ(x)) = ∩n≥2+d−pI
n(κ(x)).

By the Arason-Pfister Haupsatz, 0 = ∩n≥0I
n(κ(x)). Therefore, I2+d−p(κ(x)) = 0,

hence, by definition,

I2+d−p(κ(x); Λp((mx/m
2
x)
∗)) := I2+d−p(κ(x)) ·W (κ(x); Λp((mx/m

2
x)
∗)) = 0

and from this, for all j ≥ 0, C(X, I
j+d+2

, ωX/k) = 0 follows. Then, the exact
sequence of complexes

0→ C(X, Id+2, ωX/k)→ C(X, Id+1, ωX/k)→ C(X, I
d+1

)→ 0

degenerates into the desired isomorphism, finishing the proof of the lemma. �

Now we are ready to state and prove the finiteness theorem.

Theorem 5.3. Let X be a smooth and quasi-projective variety over a finite field
Fp (p > 2), pure dimensional of dimension d. Then the d-th Chow-Witt group

C̃H
d
(X) is finite.

Proof. Recall, it follows from the definition that there is always an exact sequence

CHd(X)→ C̃H
d
(X)→ Hd(X, Id)→ 0,

and for any quasi-projective variety over a finite field, the group CHd(X) is finite
[KS10, Corollary 9.4 (1)]. So, the proof reduces to proving that Hd(C(X, Id, ωX/k))
is finite. From the short exact sequence of complexes

0→ C(X, Id+1, ωX/k)→ C(X, Id, ωX/k)→ C(X, I
d
)→ 0,

we obtain the long exact sequence in cohomology

· · · → Hd(C(X, Id+1, ωX/k))→ Hd(C(X, Id, ωX/k))→ Hd(C(X, I
d
))→ · · ·

From Arason’s theorem (Theorem 2.5), it follows thatHd(C(X, I
d
)) andHd(C(X, I

d+1
))

are isomorphic to the Kato cohomology groups Hd(C(X,Hd)) and Hd(X,Hd+1),
respectively. The latter are finite by Lemma 1.17 (d) and (c), respectively. We con-

clude the proof by identifying Hd(C(X, Id+1, ωX/k)) with Hd(C(X, I
d+1

)) using
Lemma 5.2. �
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phismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. (1965), no. 24, 231.

MR MR0199181 (33 #7330)
[Hor08] Jens Hornbostel, Oriented Chow groups, Hermitian K-theory and the Gersten conjec-

ture, Manuscripta Math. 125 (2008), no. 3, 273–284. MR 2373061 (2008j:19011)

[Jan] Jannsen, Uwe and Saito, Shuji and Sato, Kanetomo, Étale duality for constructible
sheaves on arithmetic schemes, Preprint, October 20, 2009, K-theory Preprint

Archives, http://www.math.uiuc.edu/K-theory/0946/.
[Kah05] Bruno Kahn, Algebraic K-theory, algebraic cycles and arithmetic geometry, Handbook

of K-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 351–428. MR 2181827 (2007b:14016)
[Kat86a] Kazuya Kato, A Hasse principle for two-dimensional global fields, J. Reine Angew.

Math. 366 (1986), 142–183, With an appendix by Jean-Louis Colliot-Thélène.
MR MR833016 (88b:11036)



24 JEREMY JACOBSON

[Kat86b] , Milnor K-theory and the Chow group of zero cycles, Applications of alge-
braic K-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo.,
1983), Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 241–253.
MR 862638 (88c:14012)

[Kne77] Manfred Knebusch, Symmetric bilinear forms over algebraic varieties, Conference on
Quadratic Forms—1976 (Proc. Conf., Queen’s Univ., Kingston, Ont., 1976), Queen’s
Univ., Kingston, Ont., 1977, pp. 103–283. Queen’s Papers in Pure and Appl. Math.,

No. 46. MR 0498378 (58 #16506)
[KS10] M. Kerz and S. Saito, Cohomological Hasse principle and motivic cohomology for

arithmetic schemes, ArXiv e-prints (2010).
[Liu02] Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Math-

ematics, vol. 6, Oxford University Press, Oxford, 2002, Translated from the French by
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