
COHOMOLOGICAL INVARIANTS FOR QUADRATIC FORMS

OVER LOCAL RINGS
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Abstract. Let A be local ring in which 2 is invertible and let n be a non-

negative integer. We show that the nth cohomological invariant of quadratic

forms is a well-defined homomorphism from the nth power of the fundamental
ideal in the Witt ring of A to the degree n étale cohomology of A with mod

2 coefficients, which is surjective and has kernel the (n+1)th power of the

fundamental ideal. This is obtained by proving the Gersten conjecture for
Witt groups in an important mixed-characteristic case.

Introduction

Let A be a local ring with 2 invertible and let W (A) denote the Witt ring of
symmetric bilinear forms over A. Let I(A) denote the fundamental ideal in the
Witt ring of A, and let In(A) denote its powers. Recall that a form 〈1,−a1〉 ⊗
〈1,−a2〉⊗· · ·⊗〈1,−an〉, where the ai ∈ A× for all i, is called an n-fold Pfister form
and is denoted by 〈〈a1, a2, · · · , an〉〉. When A is a field, a long standing problem in
quadratic form theory had been to show that the assignment 〈〈a1, a2, · · · , an〉〉 7→
(a1)∪(a2)∪· · ·∪(an) induces a well-defined homomorphism of groups, the so-called
nth cohomological invariant

en(A) : In(A)→ Hn
ét(A,Z/2)

and furthermore, to show it induces a bijection

en(A) : In(A)/In+1(A)→ Hn
ét(A,Z/2)

of groups. When A is a field, the solution to this problem follows from the af-
firmation of Milnor’s conjectures on the mod 2 Galois cohomology of fields and
on quadratic forms. The Galois cohomology part is due to Vladimir Voevodsky
[Voe03]. The quadratic forms part is due to Dmitri Orlov, Alexander Vishik, and
Voevodsky: They proved the result for fields of characteristic zero in [OVV07] and
this is sufficient1; There is another proof in a paper of Bruno Kahn and Ramdorai
Sujatha [KS00, Remark 3.3] and Fabien Morel gave a proof for any field of char-
acteristic not two [Mor05].2 When A is a local ring (resp. semilocal ring) which
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contains an infinite field of characteristic not two this was shown by Moritz Kerz
and Stefan Müller-Stach [KMS07, Corollary 0.8] (resp. forthcoming work of Stefan
Gille); in [Ker10, Proposition 16] Kerz removed the hypothesis that the field be in-
finite. When A is a henselian local ring this may be shown using the affirmation of
the Milnor conjectures together with “rigidity” to reduce to the field case by passing
to the residue field of A. When A is strictly henselian, I(A) = 0 as any element in
A× is a square, hence e0 : W (A)→ H0

ét(A,Z/2) is an isomorphism and In(A) = 0
for n > 0. For general local rings there are results up to e2 [Bae79, Yuc86, Man75].

In this paper, Theorem 4.4 solves this problem in general, that is to say, for any
local ring A (which may be singular and need not contain a field) with 2 ∈ A×.
There is also a globalization of these questions to any scheme with two invertible
in its global sections, see Remark 4.5.

To remove the restriction from the previously cited work that the local ring con-
tains a field it is sufficient to prove the Gersten conjecture for the Witt groups and
purity for the powers of the fundamental ideal in the case of local rings essentially
smooth over Z〈p〉, where p is a prime integer p 6= 2 and Z〈p〉 denotes the localization
of Z at the prime ideal 〈p〉.

More generally, we prove in Theorem 2.8 the Gersten conjecture for the Witt
groups of A in the unramified case, that is to say, for any regular local ring A of
mixed-characteristic with residue field of characteristic p 6= 2 and A/pA a regular
ring. The proof uses the global signature morphism to show that the Gersten
conjecture for étale cohomology implies the Gersten conjecture for Witt groups,
and then concludes by using known results on the Gersten conjecture for étale
cohomology. One may also prove the Gersten conjecture for Witt groups without
relying on results for étale cohomology.3

In Theorem 3.2 we prove purity for the powers of the fundamental ideal in the
Witt ring for local rings essentially smooth over Z〈p〉 by following the argument
given in the case of local rings essentially smooth over a field by M. Kerz and S.
Mueller-Stach [KMS07, Corollary 0.5]. The Gersten conjecture result we proved in
Theorem 2.8 is necessary here.

The results of this paper can likely be generalized to semi-local rings. We re-
frained from doing so, although the semi-local case may be important since locality
is lost after passing to finite extensions.

Recall that the cohomological invariants en agree with the classical invariants di-
mension mod 2 (e0), discriminant (e1), Hasse invariant (e2), and Arason invariant
(e3). In the last section we obtain hypotheses under which the cohomological in-
variants classify non-degenerate quadratic forms over A (Lemma 5.2 together with
Corollary 4.6 B). For example, in Proposition 5.4 we prove that if A is a local
ring with 2 ∈ A× that is essentially of finite type over the integers and if s de-
notes the least integer for which Hn

ét(A[i],Z/2) = 0 for all n > s (such an integer
always exists, see (4.7)), then: ∩In(A) = 0; the dimension, total signature (Def-
inition 1.2), and the cohomological invariants e0, e1, · · · es classify non-degenerate
quadratic forms over A; the level s(A) and height h(A) of A are bounded in terms
of s; if A is additionally regular, then In(A) → In(K) is injective when n > s,
where K is the fraction field of A.

3See the thesis of the author titled “On the Witt groups of schemes”
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1. On the signature

In this section we use the global signature to prove Lemma 1.5.

Definition 1.1. Let A be a commutative ring with unit. The real spectrum of A
is the topological space obtained by equipping the set

sperA := {(p, P )|p ∈ specA,P is an ordering on the residue field k(p)}
with the “Harrison-topology” [KS89, Kapitel III, §3, Definition 1]. For any scheme
X, the real spectrum of X is the topological space denoted Xr obtained by glueing
the real spectra sperAα of any open affine cover X = ∪Aα of X; it does not depend
on the cover chosen [Sch94].

Definition 1.2. Let X be a scheme. The global signature, as defined for instance
in [Mah82], is the ring homomorphism

sign : W (X)→ C(Xr,Z)

from the Witt ring of symmetric bilinear forms over X to the ring of continuous
integer valued functions on Xr that assigns an isometry class [φ] of a symmetric
bilinear form φ over X to the function on Xr defined by

sign ([φ])(x, P ) := sign P ([i∗xφ])

where ix : x → X is any point and P is any ordering on k(x) and sign P ([i∗xφ]) is
the signature with respect to P [KS89, Kapitel I, §2, Satz 2]. See [Kne77] for an
introduction to the Witt ring W (X).
When X = specA is a local ring or a field with 2 ∈ A× and φ is a non-degenerate
quadratic form over A of dimension n, then diagonalizing φ we obtain φ ' 〈a1〉 ⊥
〈a2〉 ⊥ · · · ⊥ 〈an〉 where ai ∈ A×. Then, for any prime p ∈ specA and any ordering
P on the residue field of p, one has

sign ([φ])(p, P ) =

n∑
i=1

sgn P (ai)

where ai ∈ Ap/pAp and sgn P (ai) = 1 (resp. sgn P (ai) = −1) when ai >P 0 (resp.
ai <P 0). In the field case, this map (which doesn’t depend on the diagonalization
chosen) is called the total signature (compare [KS89, Kapitel III, §8, Satz 1]), so in
the local case we will also use this name instead of global signature.
Finally, letW denote the Zariski sheaf on X associated to the presheaf U 7→W (U).
Let supp ∗Z denote the sheaf U 7→ C(Ur,Z), where C(Ur,Z) denotes the set of
continuous Z-valued functions on the topological space Ur. The global signature
induces a morphism

Sign :W → supp ∗Z
of Zariski sheaves on X.

Remark 1.3. The most important result on the global signature is due to L. Mahé
who proved that if X = specA is affine, then the cokernel of the global signature
is 2-primary torsion [Mah82, Théorème 3.2]. Equivalently, after inverting 2, that
is to say, localizing with respect to the multiplicative set S = {1, 2, 22, 23, · · · }, the
global signature induces a surjection

(1.1) sign : W (specA)[1/2] � C(sperA,Z)[1/2]

of rings. For A a field this was well-known (for instance, [Lam77, p.34, Theorem
3.4]). When A is a connected ring and sperA 6= ∅, the kernel of the global signature



4 JEREMY JACOBSON

is the nilradical in the Witt ring [Mah82, Section 1.3]. When A is a connected local
ring, using the prime ideal theory of the Witt ring one may show that either the
nilradical is 2-primary torsion or the entire Witt ring W (A) is 2-primary torsion
[Kne81, Theorem 1.2]. In either case the kernel is 2-primary torsion, hence (1.1) is
a bijection; bijectivity may also be shown using “cohomological” methods.4 When
A is a field, bijectivity of (1.1) is Pfister’s local-global principle [Pfi66, Satz 22].

Proposition 1.4. Let X be a scheme. The global signature morphism of sheaves
induces an isomorphism of sheaves

lim−→W → lim−→ supp ∗Z

where lim−→W denotes the colimit over the system of sheaves

W 2→W 2→W 2→ · · ·

and similarly for lim−→ supp ∗Z.

Proof. Recall that direct limits of sheaves lim−→Fi exist and equal the sheaf associated

to the presheaf U 7→ lim−→Fi(U). Also, a direct limit of a group over multiplication

by 2 may be identified with the localization at the element 2, hence lim−→W(U) =

W(U)[ 1
2 ] and lim−→ supp ∗(U)

def
= lim−→C(Ur,Z) = C(Ur,Z)[ 1

2 ]. In view of the results
that were discussed in Remark 1.3, for any local ring OX,x of X the map on stalks

W (specOX,x)[1/2]→ C(sperOX,x,Z)[1/2]

is an isomorphism, where sperOX,x denotes the real spectrum of specOX,x. Thus
the map of sheaves in the statement is an isomorphism. �

Lemma 1.5. Let A be a noetherian regular excellent local ring with 2 invertible.
If f ∈ A is a regular parameter, then in positive degree

H∗Zar(specAf , lim−→W) = 0

where Af denotes the localization of A at the element f , that is, A with f inverted.

Proof. From the previous proposition we obtain an isomorphism of Zariski coho-
mology groups

H∗Zar(specAf , lim−→W)
sign
' H∗Zar(specAf , lim−→ supp ∗Z)

The groupsH∗Zar(specAf , lim−→ supp ∗Z) may be identified with the groups lim−→H∗Zar(specAf , supp ∗Z)
since specAf is noetherian, hence Zariski cohomology commutes with direct limits
of sheaves [Tam94, Theorem 3.11.1]. The Zariski cohomology groupsH∗Zar(specAf , supp ∗Z)
may be identified with the real cohomology groups H∗(sperAf ,Z), and the latter
vanish in positive degree under the stated hypotheses on A by [Sch95, Corollary
(1.10)] together with [Sch94, Proposition (19.2.1)]. �

4For instance, injectivity follows by using the field case together with the Gersten conjecture

for the Witt groups W (A)[ 1
2

] with two inverted; The latter has been proved by the author for

any regular excellent local ring with 2 invertible. See forthcoming work of the author titled Real
cohomology and the powers of the fundamental ideal for more in this direction.
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2. The Gersten conjecture for Witt groups in the
mixed-characteristic case

In Theorem 2.8 of this section we prove the Gersten conjecture for the Witt
groups of any unramified regular local ring (Definition 2.2). The method is to use
Lemma 1.5, proved in the last section, to show that the Gersten conjecture for étale
cohomology implies the Gersten conjecture for Witt groups.

Remark 2.1. Let A be a regular excellent local ring with 2 ∈ A× and let X = specA.
Recall that the Gersten conjecture for étale cohomology with Z/2-coefficients asserts
that the so-called “Gersten” complexes that appear on the E1-page of the coniveau
spectral sequence are exact (see, for instance, [Jac12, Proposition 1.12] for more
details on these complexes in this setting) and that the kernel of the first differential
d0 is isomorphic to to the étale cohomology of X, that is,

0→ Hn
ét(X,Z/2)→

⊕
x∈X(0)

Hn(k(x),Z/2)
d0→

⊕
x∈X(1)

Hn−1(k(x),Z/2)→ · · ·

· · · →
⊕

x∈X(d−1)

Hn−(d−1)(k(x),Z/2)→
⊕

x∈X(d)

Hn−d(k(x),Z/2)

is an exact sequence of groups for any integer n ≥ 0 (note, there is no differ-
ential leaving the last group in the complex, which is either Hn−d(k(x),Z/2) for
n−d > 0 or H0(k(x),Z/2)). Here d denotes the Krull dimension of X, X(i) denotes
the points of codimension i (dimOX,x = i) and Hn(k(x),Z/2) the Galois cohomol-
ogy of the residue field k(x) with Z/2-coefficients. Furthermore, recall that for étale
cohomology with Z/2-coefficients the Gersten conjecture is known for A in the fol-
lowing cases: A essentially smooth over a field [BO74], see also [CTHK97, Gab94b];
A containing a field, that is to say, equicharacteristic local rings [Pan03, Proved
here for K-theory but the étale cohomology result is obtained from the essentially
smooth case by the same argument.]; A essentially smooth over a discrete valua-
tion ring (due to H. Gillet5, also follows from Thomas Geisser’s proof of the Gersten
conjecture for motivic cohomology [Gei04, This is explicitly stated in the sentence
after Theorem 1.2, because Rnε∗µ2 is the Zariski sheaf associated to the presheaf
U 7→ Hn

ét(U, µ2) and the affirmation of the Milnor conjecture allows one to identify
the Gersten complex for motivic cohomology with the Gersten complex for étale
cohomology.]).

Definition 2.2. Let (A,m) be a regular local ring of mixed (0, p)-characteristic,
that is to say, charK = 0 where K := FracA and charA/m = p where p 6= 2. When
the local ring A/pA is again regular then we will say that A is unramified.

Lemma 2.3. Let A be essentially smooth over Z〈p〉 for some prime integer p 6= 2
and let Ap denote the localization of A at the element p (that is, A with p inverted).
Then, there exists an integer N ≥ 0 for which the map of sheaves on specAp

In 2→ In+1

is an isomorphism whenever n ≥ N , where In denotes the Zariski sheaf on specAp
associated to the presheaf U 7→ In(U), U any open in specAp.

5Manuscript notes titled “Bloch-Ogus for the étale cohomology of certain arithmetic schemes”
distributed at the 1997 Seattle algebraic K-theory conference.
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Proof. To prove the assertion of the lemma, it is sufficient to show that the induced
map on stalks is an isomorphism. Let p ∈ specAp. Since A is essentially smooth
over Z〈p〉, there exists a bound on the transcendence degree of the residue fields
of the local ring (Ap)p over their prime subfield Q. Consequently, there exists an
integer N ≥ 0 such that for any residue field k(x) of (Ap)p, including the fraction

field, the map In(k(x))
2→ In+1(k(x)) is an isomorphism of groups whenever n ≥ N

[AE01, Lemma 2.1]. Let Y = spec (Ap)p and let K denote the field of fractions of
Y . The rows in the diagram below

0 // In(Y ) //

2

��

In (K)
∂ //

2

��

⊕
x∈Y (1) In−1(k(x))

2

��

0 // In+1(Y ) // In+1 (K)
∂ //

⊕
x∈Y (1) In(k(x))

are exact as a consequence of purity for the powers of the fundamental ideal [Ker10,
Proposition 16 (1)] and the Gersten Conjecture for the Witt groups [BGPW02,
Theorem 6.1]. As usual, In−1(k(x)) indicates W (k(x)) whenever n−1 ≤ 0, similarly
for In(Y ) and In(K). Hence, we get from the diagram an isomorphism of kernels

In(Y )
2' In+1(Y )

whenever n ≥ N , finishing the proof of the lemma. �

Lemma 2.4. Let A be essentially smooth over Z〈p〉, then there is a sequence of
sheaves on Ap

(2.1) 0→ In+1 → In → Hn → 0

and this sequence is exact.

Proof. First we describe how to obtain the maps in the sequence. Let U be any
open subscheme of specAp, and let K denote the fraction field of U . It is well-
known that the lower square in the diagram below commutes as a consequence of
a theorem of J. Arason on the second residue homomorphism [Ara75, Satz 4.11].

(2.2) 0

��

In(U) //

��

H0
Zar(U,Hn)

��

In(K)

��

en(K)
// Hn(K,Z/2)

��⊕
x∈U(1) In−1(k(x))

⊕en(k(x))
//
⊕

x∈U(1) Hn−1(k(x),Z/2)

Here the maps en are the nth cohomological invariants described in the Introduction
and the vertical maps in the lower square are the second residue homomorphisms.
For details see [Jac12, Theorem 2.5]. In the diagram above we used the fact that
the kernel of the residue

Hn(K,Z/2)→
⊕
x∈U(1)

Hn−1(k(x),Z/2)
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equalsH0
Zar(U,Hn) as a consequence of the Gersten conjecture for étale cohomology

(Remark 2.1). The top horizontal map in Diagram (2.2) induces a morphism

In → Hn

of sheaves on Ap. The sequence (2.1) is exact on stalks using [Ker10, Remark
preceding Proposition 16] together with [KMS07, Corollary 0.8], which finishes the
proof. �

Lemma 2.5. Let A be essentially smooth over Z〈p〉, p 6= 2. Then

H∗Zar(specAp,Hn) = 0

in positive degree.

Proof. The Gersten conjecture for étale cohomology with Z/2-coefficients is known
in the case of local rings essentially smooth over a field or over a discrete valuation
ring (Remark 2.1). Hence we have that the Gersten complex for A/pA and for A is
exact in positive degree. The Gersten conjecture is known for the local rings of Ap as
these are essentially smooth over Q, hence the cohomology of the Gersten complex
of Ap agrees with the Zariski cohomology groups H∗Zar(specAp,Hn). Finally, we
have that H∗Zar(specAp,Hn) = 0 since the cohomology of the Gersten complex for
Ap lives in a long exact sequence with the cohomology of the Gersten complexes
for A/pA and for A (see, for example, [Ros96, Ch. 5]). �

Lemma 2.6. Let A be essentially smooth over Z〈p〉, p 6= 2. There exists an integer
N ≥ 0 such that

Hm
Zar(specAp, IN ) = 0

whenever m ≥ 2.

Proof. Using Lemma 2.3 we obtain an integer N ≥ 0 such that the leftmost vertical
map in the commutative diagram below of sheaves on specAp is an isomorphism.

0 // IN 2 //

2

��

IN //

��

IN/2 //

��

0

0 // IN+1 // IN // IN // 0

where IN denotes the Zariski sheaf associated to the presheaf U 7→ IN (U)/IN+1(U).

It follows that IN/2 → IN is an isomorphism of sheaves. Using Lemma 2.4 one

may obtain an isomorphism of sheaves IN ' HN , thus from Lemma 2.5 we obtain
that H∗(specAp, IN/2) = 0 in positive degree. From this it follows that, for m ≥ 2,
multiplication by 2 induces an isomorphism in cohomology

Hm
Zar(specAp, IN )

2' Hm
Zar(specAp, IN )

and consequently, for m ≥ 2,

Hm
Zar(specAp, IN ) ' lim−→Hm

Zar(specAp, IN )

where lim−→Hm
Zar(specAp, IN ) denotes the colimit over the system

Hm
Zar(specAp, IN )

2→ Hm
Zar(specAp, IN )

2→ Hm
Zar(specAp, IN )

2→ · · ·
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Since specAp is noetherian, lim−→Hm
Zar(specAp, IN ) = Hm

Zar(specAp, lim−→I
N ) [Tam94,

Theorem 3.11.1]. For any open U in specAp, W(U)/IN (U)
2N→ W(U)/IN (U) is

zero. It follows from this that the exact sequence of sheaves

0→ IN →W →W/IN → 0

degenerates after taking direct limits (over multiplication by 2) to an isomorphism
of sheaves

lim−→I
N '→ lim−→W

and thus Hm
Zar(specAp, lim−→I

N ) ' Hm
Zar(specAp, lim−→W). Then, apply Lemma 1.5

to obtain the desired vanishing statement. �

Lemma 2.7. If A is unramified (Definition 2.2), then

Hm
Zar(specAp,W) = 0

for m ≥ 2.

Proof. Let A be an unramified regular local ring. Since A/p is regular and contains
Z/p, the inclusion Z/p→ A/p is geometrically regular. It follows that the inclusion
Z〈p〉 → A is flat with geometrically regular fibers, that is to say, it is a regular
morphism. From Popescu’s Theorem [Pop86, Theorem 1.8], one may obtain that
A is a filtered colimit of local rings essentially smooth over Z〈p〉. As Zariski co-
homology commutes with such colimits, it suffices to prove the vanishing for the
essentially smooth case. Therefore, for the remainder of the proof, A will denote a
local ring essentially smooth over Z〈p〉, p 6= 2. Consider the long exact sequence in
cohomology

· · · → Hm
Zar(specAp, In+1)→ Hm

Zar(specAp, In)→ Hm
Zar(specAp,Hn)→ · · ·

associated to the short exact sequence of sheaves of Lemma 2.4. Using Lemma 2.5
and the exact sequence above, for any integer n ≥ 0, we obtain isomorphisms in
cohomology

Hm
Zar(specAp, In+1)

'→ Hm
Zar(specAp, In)

for all m ≥ 2 and n ≥ 0. Using Lemma 2.6 we obtain the desired vanishing
statement. �

Theorem 2.8. Let A be a regular local ring with 2 ∈ A×. If A is unramified, then
A satisfies the Gersten conjecture for Witt groups.

Proof. Let A be a mixed-characteristic unramified regular local ring with residue
field of characteristic p 6= 2. As p ∈ A is a regular parameter, one may obtain the
long exact sequence in the cohomology of the Gersten complexes below [BGPW02,
Lemma 3.3 and proof of Theorem 4.4].

· · · → H∗(C(A,W ))→ H∗(C(Ap,W ))→ H∗(C(A/pA,W ))→ · · ·
Since the Gersten conjecture is known for any local ring containing a field [BGPW02,
Theorem 6.1], the groups H∗(C(A/pA,W )) vanish in positive degree and

H∗(C(Ap,W )) ' H∗Zar(specAp,W)

in all degrees. From Lemma 2.7 we have that H∗Zar(specAp,W) = 0 for m ≥ 2.
Thus H∗(C(A,W )) = 0 in degrees two and higher, and from this it follows that
the Gersten conjecture holds for A [BGPW02, Lemma 3.2 (2)]. �



COHOMOLOGICAL INVARIANTS 9

Remark 2.9. Although we don’t use it in this article, one can show that the Gersten
conjecture for the Witt groups holds for any regular local ring A with 2 ∈ A× that
is equipped with a regular morphism Λ→ A, where Λ is a regular local ring having
Krull dimension dimA ≤ 1. Indeed, this is known when Λ has Krull dimension
one, that is to say, when Λ is a discrete valuation ring6 and it is known when Λ is
a field [BGPW02, Theorem 6.1].

3. Purity for powers of the fundamental ideal

Proposition 3.1. Let A be a local ring essentially smooth over Z〈p〉, p 6= 2. Then
the sequence

In(A)/In+1(A)
i∗→ In(K)/In+1(K)

∂→
⊕

x∈X(1)

In−1(k(x))/In(k(x))

where i∗ denotes the map induced by i : specK → specA, is exact.

Proof. Consider the commutative diagram

KM
n (A)/2 //

��

KM
n (K)/2 //

��

⊕
x∈X(1) KM

n−1(k(x))/2

��

0 // Hn
ét(A,Z/2) // Hn

ét(K,Z/2) //
⊕

x∈X(1) H
n−1
ét (k(x),Z/2)

The lower row is exact (Remark 2.1). Furthermore, for A essentially smooth over a
discrete valuation ring, the Galois symbol KM

n (A)/2 → Hn
ét(A,Z/2) is surjective7,

compare [Kah02, p.114, surjectivity of the Galois symbol]. It follows that the upper
row is exact in the middle using the affirmation of the Milnor conjecture (as cited in
the Introduction) to obtain that the middle vertical map is an isomorphism. Hence,
in the commutative diagram

KM
n (A)/2 //

��

KM
n (K)/2 //

��

⊕
x∈X(1) KM

n−1(k(x))/2

��

In(A)/In+1(A) // In(K)/In+1(K) //
⊕

x∈X(1) In−1(k(x))/In(k(x))

we have that the lower row is exact in the middle by again using the Milnor conjec-
ture to obtain that the middle and rightmost vertical arrows are isomorphisms. �

The following result was proved for local rings essentially smooth over a field
by M. Kerz and S. Mueller-Stach [KMS07, Corollary 0.5]. The proof of the next
theorem is obtained by following their proof and inputting the Gersten conjecture
results for Witt groups proved in Theorem 2.8.

Theorem 3.2. Let A be essentially smooth over Z〈p〉, p 6= 2, and n a non-negative
integer. Let In(K)unr denote the intersection of the kernel of the residue morphism
∂ and In(K). Let i∗ : W (A) → W (K) denote the map on Witt groups induced by

6Thesis of the author, Theorem 4.28. One can use a transfer argument to remove the restriction
that the residue field of the discrete valuation ring be infinite.

7In a correspondence with the author B. Kahn explained that the passage from surjectivity

in the case of local rings essentially smooth over a field to this case is easy and goes back to

Lichtenbaum, if you grant Gillet’s Gersten conjecture for étale cohomology. Surjectivity in the
case of local rings essentially smooth over a field is known [Ker09, Ker10].
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the inclusion of A into the fraction field K of A. Then purity holds for the nth power
of the fundamental ideal, that is, for i∗(q) ∈ In(K) we have that i∗(q) ∈ In(K)unr
if and only if q ∈ In(A).

Proof. Let A be a local ring essentially smooth over Z〈p〉, p 6= 2, and n a non-
negative integer. The one direction, q ∈ In(A) implies i∗(q) ∈ In(K)unr is clear.
To prove the other direction, let q ∈ W (A) such that i∗(q) ∈ Inunr(K). Using
Proposition 3.1 we may obtain qn ∈ In(A) satisfying i∗(q − qn) ∈ In+1(K)unr.
Repeating this argument, one finds i∗(q − qn − qn+1 · · · − qn+j) ∈ In+j+1(K)unr
for any j ≥ 0. Since K is of finite transcendence degree over its prime field, for
some integer s sufficiently large, In+s+1(K) = 2nIs+1(K) [EKM08, Lemma 41.1].
Using the fact that for any residue field of A one has a similar result (with an s
less than or equal to the previous s used for K), it follows that In+s+1(K)unr =
2nIs+1(K)unr. Using this equality together with Theorem 2.8, we obtain that i∗(q−
qn − qn+1 · · · − qn+s) = 2ni∗(q

′
), where i∗(q

′
) ∈ Is+1(K)unr and q

′ ∈W (A). Thus,

i∗(q) = i∗(2
nq
′
+qn+qn+1 · · ·+qn+s), where 2nq

′
+qn+qn+1 · · ·+qn+s ∈ In(A). As

W (A)→W (K) is injective (Theorem 2.8), q = 2nq
′
+qn+qn+1 · · ·+qn+s ∈ In(A),

completing the proof. �

Corollary 3.3. Let A be a regular local ring with 2 ∈ A×. If A is unramified, then
en : In(A)→ Hn

ét(A,Z/2) is well-defined and the sequence

0→ In+1(A)→ In(A)
en→ Hn

ét(A,Z/2)→ 0

is exact.

Proof. Let A be a local ring essentially smooth over Z〈p〉. The sequence of “unram-
ified” groups, that is, kernels of the corresponding residue homomorphisms

(3.1) 0→ In+1
unr (K)→ Inunr(K)→ Hn

unr(K,Z/2)

is exact as there is an exact sequence of Gersten complexes 0 → C(A, In+1) →
C(A, In) → C(A,Hn) → 0 and the residue is the first differential in the Ger-
sten complex. Using Proposition 3.1 we have that In(A)/In+1(A) surjects onto
(In(K)/In+1(K))unr. Using the affirmation of the Milnor conjecture (as cited in the
Introduction), one has that (In(K)/In+1(K))unr ' Hn

unr(K,Z/2). As purity holds

for the étale cohomology of A (Remark 2.1) it follows that In(A)
en→ Hn

ét(A,Z/2) is
well-defined and surjective. So the sequence below is exact on the right

(3.2) 0→ In+1(A)→ In(A)
en→ Hn

ét(A,Z/2)→ 0

Using purity (Theorem 3.2) together with the exact sequence (3.1) we obtain that it
is exact everywhere. As both In(A) and Hn

ét(A,Z/2) commute with filtered colimits
of rings, and filtered colimits are exact, we have that the sequence (3.2) is exact
when A is any filtered colimit of local rings essentially smooth over Z〈p〉. Using
Popescu’s Theorem [Pop86, Theorem 1.8], one has that this is the case when A is
an unramified regular local ring with 2 ∈ A×. �

4. On the nth cohomological invariant

Lemma 4.1. Let B be a local ring, 2 ∈ B×, and (B, I) is a henselian pair ([Elk73,
0. Preliminaries, second Definition]), then for all integers n ≥ 0, the homomor-
phisms of groups

In(B)→ In(B/I)
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and

In(B)/In+1(B)→ In(B/I)/In+1(B/I)

induced by the surjection B → B/I are bijections.

Proof. Let B a local ring, 2 ∈ B×, and (B, I) a henselian pair. Considering the
diagram

0 // In+1(B) //

��

In(B) //

��

In(B)/In+1(B)

��

// 0

0 // In+1(B/I) // In(B/I) // In(B/I)/In+1(B/I) // 0

we see that, by the two out of three lemma, it is sufficient to prove that In(B) →
In(B/I) is a bijection for all n ≥ 0. To prove injectivity for all n ≥ 0, note that as
In(B) is contained in W (B), it suffices to prove that W (B)→W (B/I) is injective.
Let [(E, b)] ∈W (B) be non-zero and let [(E, b)] ∈W (B/I) denote its image under
the map W (B) → W (B/I). Recall that if [(E, b)] 6= 0, then a representative
(E, b) from [(E, b)] can be chosen that does not admit an isotropic element (an
element λ ∈ E is said to be isotropic if 〈λ〉 = Bλ is a totally isotropic subspace,
a subspace S ⊂ E is totally isotropic if S ⊂ S⊥). So, to demonstrate the desired
injectivity, we will show that [(E, b)] ∈ W (B/I) = 0 implies (E, b) must have an
isotropic element. To show this, suppose that [(E, b)] ∈ W (B/I) = 0. Then, b
splits off a hyperbolic plane, that is, we can find x, y ∈ B/I such that b(x, x) = 0,
b(x, y) = 1, and b(y, y) = 0. Let x, y ∈ B denote lifts of x, y ∈ B/I and let
f(T ) = b(x, x)T 2 + 2b(x, y)T + b(y, y). Then, b(x, x), b(y, y) ∈ I and b(x, y) ∈ B×.

So, 0 is a root of f modulo I since f(0) = b(y, y) = 0. Also, f ′(0) is a unit modulo

I since f ′(0) = 2b(x, y) = 2 and by hypothesis 2 ∈ B× so 2 is a unit in the local
ring B/I. In this situation, since (B, I) is a henselian pair, f has a root a ∈ B
and a = 0 [Elk73, II, Lemme 2, letting (A,J ) = (B, I), J = 〈f〉, n = 1 and
h = 0. Note the hypotheses of Lemme 2 are satisfied as J(0) = 〈f(0)〉 ⊂ I and

∆(0) = 〈f ′(0)〉 = 〈2b(e, f)〉 = B.]. Then λ := ax+ y is the desired element since

b(λ, λ) = b(ax+ y, ax+ y) = a2b(x, x) + 2ab(x, y) + b(y, y) = f(a) = 0

finishing the proof of injectivity. To prove surjectivity of In(B)→ In(B/I) for all
n ≥ 0, recall that In(B/I) is additively generated by Pfister forms 〈〈b1, b2, . . . , bn〉〉
where b1, b2, . . . bn are units in B/I [Bae78, Ch. V, Section 1, Remark 1.3]. For
any Pfister form 〈〈b1, b2, . . . , bn〉〉 we may lift the bi to units bi of B to obtain an
element 〈〈b1, b2, . . . , bn〉〉 ∈ In(B) mapping to it, proving surjectivity of In(B) →
In(B/I) when n > 0. Surjectivity when n = 0 now follows from the diagram above
since W (B)/I(B) → W (B/I)/I(B/I) is surjective, both terms being isomorphic
to Z/2Z. This finishes the proof of the lemma. �

4.2 (Construction of a Henselian pair). Let R = Z[T1, T2, · · · , Tn]/J for some ideal
J and integer n ≥ 0. Let A := Rp denote the localization of R with respect to
a prime ideal p ∈ specR. Then, one may obtain a henselian pair (B, I) for A
as follows: let s denote the quotient map Z[T1, T2, · · · , Tn] → R and let B0 :=
Z[T1, T2, · · · , Tn]s−1(p) and similarly I0 := Js−1(p); let B denote the henselization
of B0 along I0 and I := I0B. Recall, the henselization along I0 is obtained by
taking the colimit over the directed category consisting of those étale B0-algebras
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C having the property that B0/I0 → C/I0C is an isomorphism. The map that
B0 → B induces on quotients A = B0/I0 → B/I is an isomorphism of local rings.

Lemma 4.3. Let R = Z[T1, T2, · · · , Tn]/J for some ideal J , some integer n ≥ 0.
Let A := Rp denote the localization of R with respect to a prime ideal p ∈ specR.
Let (B, I) denote the henselian pair for A constructed in (4.2). Then B is a regular
local ring satisfying exactly one of the following two conditions:

(1) B contains Q;
(2) B contains Z〈p〉 for some integer p ∈ Z and B/p is regular.

Proof. Pulling back the maximal ideal of the local ring B over Z→ B induces a map
of local rings Z〈p〉 → B, where 〈p〉 ∈ specZ. We claim that Z〈p〉 → B is a regular
morphism, that is to say, a flat morphism having geometrically regular fibers. It
follows from this claim that: B is regular, since Z〈p〉 is regular and the morphism
Z〈p〉 → B is regular; Z〈p〉 → B is injective, since it is a flat morphism; when p = 0
we find that B contains Q and when p 6= 0 we find that B contains Z〈p〉; if p 6= 0,
then B/p is regular as it is the closed fiber Z〈p〉/p → B/p of a regular morphism.
To finish the proof of the lemma we prove the claim. First, note that Z〈p〉 → B0 is
a regular morphism. As B is a filtered colimit of étale B0-algebras, it follows that
B0 → B is also a regular morphism. Finally, recall that the composition of regular
morphisms is again regular. �

Theorem 4.4. Let A be any local ring with 2 invertible and let In(A) := In(A)/In+1(A).

(1) The assignment

〈〈a1, a2, · · · , an〉〉 7→ (a1) ∪ (a2) ∪ · · · ∪ (an)

determines a well-defined group homomorphism

en : In(A)→ Hn
ét(A,Z/2)

(2) The map en is surjective with kernel equal to In+1(A), that is to say, the
induced map

en : In(A)→ Hn
ét(A,Z/2)

is a bijection.

Proof. Any local ring A may be written as a union of its finitely generated subrings
Aα. Localizing the Aα with respect to the pullback pα over Aα → A of the maximal
ideal of A, one obtains local rings (Aα)pα , and A is the filtered colimit of the (Aα)pα .
As both groups In(A) and Hn

ét(A,Z/2) respect filtered colimits, and filtered colimits
are exact, to prove (1) and (2) it is sufficient to prove that there is a sequence

0→ In+1(Aα)→ In(Aα)
en→ Hn

ét(Aα,Z/2)→ 0

which is exact for any α. To demonstrate this, now let A = Rp be the localization
of R = Z[T1, T2, · · · , Tn]/J for some ideal J and some integer n ≥ 0. We will show
that en : In(A) → Hn

ét(A,Z/2) is well-defined and surjective with kernel In+1(A).
Let (B, I) be a henselian pair for A as constructed in (4.2). By Lemma 4.3 we
have that B is a regular local ring which either contains Q, or, contains Z〈p〉 and
is unramified. When B contains Q (resp. is unramified), it follows from [Ker10,
Proposition 16] (resp. Corollary 3.3) that the map en in the commutative diagram
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below is well-defined and that the upper horizontal sequence is exact

0 // In+1(B)

'
��

// In(B)

'
��

en // Hn
ét(B,Z/2) //

'
��

0

0 // In+1(A) // In(A) Hn
ét(A,Z/2) // 0

where the vertical maps are induced by the surjection B → B/I ' A. The vertical
maps are isomorphisms by a theorem of O. Gabber [Gab94a] and independently,
R. Strano [Str84] for étale cohomology, and by Lemma 4.1 for the powers of the
fundamental ideal. It follows that en : In(A) → Hn

ét(A,Z/2) is well-defined and
surjective with kernel In+1(A), finishing the proof of the theorem. �

Remark 4.5. Let X be a scheme with 2 invertible in its global sections and let
In(X) denote the nth power of the fundamental ideal I(X), where I(X) denotes
the kernel of the rank homomorphism W (X) → H0

ét(X,Z/2) [Kne77, Chapter 1,
§7]. Let In denote the Zariski sheafification of the presheaf U 7→ In(U), and let
Hn denote the Zariski sheafification of the presheaf U 7→ Hn

ét(U,Z/2). Then, one
may ask a similar question, does en globalize to a morphism of sheaves

en : In → Hn

and furthermore, does this morphism induce an isomorphism

en : In → Hn

of sheaves? Here In denotes the sheafification of the presheaf

U 7→ In(U)/In+1(U)

To see that the answer is yes, it is sufficient, by Theorem 4.4, to define a map of
sheaves In → Hn. We don’t use this result in this paper, so we will only sketch an
argument by which such a map may be obtained. Follow the argument of [Kah02,
proof of Proposition 2.5] mutatis mutandis, which is to say, one has such a map
whenever the Gersten conjecture is known for the local rings of X, then one obtains
a map for any X with two invertible by reducing to X of finite type over Z and
henselizing along X ↪→ AnZ and proceeding as in the local case.

In particular, for any scheme with 2 invertible in its global sections, one may
obtain an isomorphism in cohomology

Hm
Zar(X, In)

'→ Hm
Zar(X,Hn)

for all m ≥ 0 and all n ≥ 0.

Furthermore, if one sheafifies with respect to the étale topology to obtain a sheaf

Wét, then the rank homomorphism induces an isomorphism of étale sheavesWét
'→

(Z/2)ét: on stalks one finds the bijection e0 : W (A)→ H0
ét(A,Z/2) ' Z/2 since A

is strictly henselian (see Introduction). In particular, one obtains the isomorphism
in (étale) cohomology

Hm
ét (X,Wét)

'→ Hm
ét (X,Z/2)

for all m ≥ 0.



14 JEREMY JACOBSON

For a local ring with 2 ∈ A×, Corollary C. below generalizes to any integer s
a result of R. Baeza [Bae79, §2, Theorem] (s = 1) and J. Yucas [Yuc86, Theorem
2.10] (s = 2), while D. generalizes a result due to K. Mandelberg [Man75, Theorem
1.1] (s = 2).

Corollary 4.6. Let A be a local ring with 2 ∈ A×, let E and F be two non-
degenerate quadratic forms over A, and let s ≥ 0 be an integer. Consider the
following assertions:

I. E is isometric to F , E ' F ;
II. E and F have the same dimension and the same cohomological invariants

en(E) = en(F ) for all n ≥ 0;
III. E and F have the same dimension, total signature sign (E) = sign (F ), and

the same cohomological invariants up to s, en(E) = en(F ) for 0 ≤ n ≤ s;
IV. E and F have the same dimension and the same cohomological invariants

up to s, en(E) = en(F ) for 0 ≤ n ≤ s;
V. E and F have the same total signature sign (E) = sign (F ).

Then, the following implications hold:

A. II⇒ V;
B. If ∩In(A) = 0, then I ⇐⇒ II;
C. If Is+1(A) is torsion free, then I ⇐⇒ II ⇐⇒ III;
D. If Is+1(A) = 0, then I ⇐⇒ II ⇐⇒ III ⇐⇒ IV.

Proof. To prove A. use Theorem 4.4 to obtain that if en(E) = en(F ) for all n ≥ 0,
then [E] − [F ] ∈ ∩In(A). Note that ∩In(A) is in the kernel of the signature mor-
phism sign : W (A) → C(sperA,Z) because sign maps In(A) into C(sperA, 2nZ),
hence ∩In(A) maps into C(sperA,∩2nZ) = 0. To prove B. only implication II⇒ I
needs proof. Use Theorem 4.4 to obtain that II implies [E] − [F ] ∈ ∩In(A), so
∩In(A) = 0 implies that [E] − [F ] is trivial in the Witt ring W (A). As E and F
have the same dimension and same class in the Witt group [E] = [F ], it follows
using cancellation [Bae79, Ch. III, Corollary 4.3] that E and F are isometric. To
prove C. we will only demonstrate that III ⇒ I as I ⇐⇒ II using B. and clearly
I ⇒ III. Using Theorem 4.4 we find that III implies that [E]− [F ] ∈ Is+1(A) and
that [E]− [F ] is in the kernel of the signature. Since the kernel of the signature is
torsion, Is+1(A) torsion free implies [E]− [F ] is trivial in the Witt ring. As argued
previously, it follows that E and F are isometric. To prove D. use that IV together
with Is+1(A) = 0 imply [E]− [F ] is trivial in the Witt ring, hence IV⇒ I. �

4.7. Let X be a scheme with 2 invertible. The étale cohomological 2-dimension
cd2 (X) is defined to be the largest integer n for which there is a 2-primary torsion
sheaf F on X with Hn

ét(X,F ) 6= 0. If no such n exists we write cd2 (X) = ∞.
The virtual étale cohomological two-dimension vcd2 (X) is defined to be the étale
cohomological two-dimension cd2 (X[i]) of X[i], where i =

√
−1. Recall that when

2 is invertible on X that cd2 (X) <∞ if and only if the real spectrum of X is empty
(for instance if −1 is a sum of squares in all residue fields of X) and vcd2 (X) <∞
[Sch94, Remark 7.5 together with Proposition 7.2 c)]. If X is a finite type Z-scheme
of Krull dimension d, then vcd2 (X) ≤ 2d + 1 [SGA73, X.6.2]. It follows that any
local ring A essentially of finite type over specZ[1/2] has vcd2 (A) <∞.

Next we apply Theorem 4.4 to demonstrate that the virtual étale cohomological
two-dimension of A bounds the n for which In(A) is torsion free.



COHOMOLOGICAL INVARIANTS 15

Corollary 4.8. Let A be a local ring with 2 ∈ A×. If ∩In(A) = 0 and vcd2 (A) = s,

then Is+1(A) is torsion free and In(A)
2→ In+1(A) is a bijection whenever n > s.

Proof. Apply Theorem 4.4 in order to obtain the exact rows in the commutative
diagram below.

0 // In+1(A) //

⊗〈〈−1〉〉
��

In(A)
en //

⊗〈〈−1〉〉
��

Hn
ét(A,Z/2) //

∪(−1)

��

0

0 // In+2(A) // In+1(A)
en // Hn+1

ét (A,Z/2) // 0

Note that in the diagram above we wrote 〈〈−1〉〉, but this is by definition 〈1, 1〉 = 2.
As vcd2 (A) = s, we may apply [Sch94, Corollary 7.20, confer with diagram of para-
graph (7.20.2)] to obtain that the vertical map on the right is a bijection whenever

n > s. It follows by a diagram chase that the kernel of In(A)
⊗〈〈−1〉〉→ In+1(A) is

contained in ∩n>sIn(A), and the latter is trivial by hypothesis. Therefore the map

In(A)
2→ In+1(A) is a bijection for all n > s. Since the only torsion in W (A) is

two-primary, we find that Is+1(A) is torsion free. �

When the local ring is regular, we obtain the following stronger corollary.

Corollary 4.9. Let A be a regular local ring with 2 ∈ A× and let K = Frac(A). If
∩In(A) = 0 and vcd2 (A) = s, then In(A)→ In(K) injective for all n > s.

Proof. For any regular semi-local ring A the kernel of W (A) → W (K) is two-
primary torsion [CT79, 2.3.4] and by Corollary 4.8 we have that In(A) has no two-
primary torsion whenever n > s, so In(A)→ In(K) is injective for all n > s. �

Next we note that the étale cohomological two-dimension of A bounds the n for
which In(A) = 0.

Corollary 4.10. Let A be a local ring with 2 ∈ A×. If ∩In(A) = 0 and Hn
ét(A,Z/2) =

0 for all n > s, then Is+1(A) = 0.

Proof. Apply Theorem 4.4 in order to obtain the short exact sequence

0→ In+1(A)→ In(A)→ Hn
ét(A,Z/2)→ 0

and using that Hn
ét(A,Z/2) = 0 for all n > s, we obtain that In+1(A) → In(A)

is an isomorphism for all n > s. Thus Is+1(A) = ∩n>sIn(A) = ∩n≥0I
n(A). The

latter intersection is trivial by hypothesis, proving Is+1(A) = 0. �

Definition 4.11. Let A be a local ring. Recall [Bae79, Appendix A] that one
defines the level of A to be the number

s(A) := min{r | − 1 = a2
1 + a2

2 + · · ·+ a2
r, ai ∈ A}

if −1 is a sum of squares in A, and s(A) =∞ otherwise. Similarly, define the height
of A to be the number

h(A) := min{2r | 2rW (A)tors = 0}
if it exists, and h(A) = ∞ otherwise. When 2 ∈ A× and s(A) < ∞, recall that
h(A) = 2s(A) [Bae79, Appendix A, Remark A.21].

Using Theorem 4.4 we bound the level and height of a local ring A in terms of
its étale cohomological dimension.
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Corollary 4.12. Let A be a local ring with 2 ∈ A× satisfying ∩In(A) = 0 and
vcd2A = s. Then:

A. h(A) ≤ 2s+1;
B. If sperA = ∅, then s(A) ≤ 2s.

Proof. For A. note that 2s+1W (A)tors ⊂ Is+1(A) and then use Corollary 4.8 to
obtain that Is+1(A) is torsion free, hence h(A) ≤ 2s+1. For B., if sperA = ∅, then
vcd2 (A) = cd2 (A) [Sch94, Corollary 7.21], so Is+1 = 0 (Corollary 4.10), and this
implies that −1 is a sum of 2s+1 squares [Bae79, Lemma 10.11]. Thus s(A) < ∞,
therefore h(A) = 2s(A) [Bae79, Appendix A, Remark A.21], that is, s(A) ≤ 2s as
desired. �

5. On the vanishing of the intersection

5.1. Recall that when A is a field, it follows from the Arason-Pfister Haupsatz that
∩In(A) = 0 [AP71, Korollar 1]. We do not know if ∩In(A) = 0 for any local ring A
with 2 ∈ A×. In the next Lemma we list hypotheses on A under which ∩In(A) = 0.

Lemma 5.2. Let A be a local ring with 2 ∈ A×. Suppose that A satisfies at least
one of the following hypotheses:

I. A is regular and the Gersten conjecture for the Witt groups holds for A;

II. A is regular and 1 + m ⊂ A×2
, where m is the maximal ideal in A;

III. A is noetherian and henselian;
IV. A is essentially of finite type over Z, that is to say, A = Rp for some prime

ideal p ∈ specR, where R = Z[T1, T2, · · · , Tn]/I for some ideal I.

Then ∩In(A) = 0.

Proof. If A satisfies the Gersten conjecture, then in particular W (A) → W (K) is
injective, hence one may use that ∩In(K) = 0 for any field K [AP71, Korollar
1] in order to conclude that ∩In(A) ⊂ ∩In(K) = 0. Similarly, if A is regular

and 1 + m ⊂ A×
2
, then W (A) → W (K) is injective by a classic result of T.

Craven, A. Rosenberg, and R. Ware [CRW75, Corollary 2.3]. If A is henselian,
then one may use Lemma 4.1 to obtain that In(A) ' In(A/m) for all n ≥ 0.
Then ∩In(A) ' ∩In(A/m) ' 0, and ∩In(A/m) = 0 [AP71, Korollar 1], hence
∩In(A) = 0. Now let A be a local ring essentially of finite type over Z. We
construct a henselian pair (B, I) for A as in (4.2). Applying Lemma 4.3 we have
that B satisfies hypotheses under which the Gersten conjecture is known, hence

∩In(B) = 0. By Lemma 4.1 we have an isomorphism In(B)
'→ In(A) for all n ≥ 0,

where (B, I) is a henselian pair with B/I ' A, hence 0 = ∩In(B) ' ∩In(A). �

Remark 5.3. More generally, one may obtain that ∩In(A) = 0 whenever A is
essentially of finite type over D, where D is a regular ring having Krull dimension
dimD ≤ 1. As we do not use this in this paper, we will only sketch the argument.
Mutatis mutandis, one constructs a henselian pair (B, I) for A as in 4.2 and follows
the proof of Lemma 4.3 in order to obtain that the B constructed will be equipped
with a regular morphism D〈p〉 → B, for some prime ideal p ∈ specB. In view of
Remark 2.9, the Gersten conjecture for the Witt groups of B is known in this case,
hence we may apply Lemma 4.1 to obtain that 0 = ∩In(B) ' ∩In(A).

Finally, we conclude by writing down a proposition which summarizes what one
obtains from the corollaries in an interesting case.
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Proposition 5.4. Let A be a local ring with 2 ∈ A× that is essentially of finite
type over Z, let s denote the least integer for which Hn

ét(A[i],Z/2) = 0 for all n > s
(such an integer always exists, see (4.7)). Then:

A. ∩In(A) = 0;
B. The dimension, total signature, and the cohomological invariants e0, e1, · · · es

classify non-degenerate quadratic forms over A.
C. h(A) ≤ 2s+1;
D. If sperA = ∅, then s(A) ≤ 2s;
E. If A is regular, then In(A)→ In(K) is injective when n > s, where Frac(K)

is the fraction field of A.
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